• Title/Summary/Keyword: 포화탄화수소

Search Result 48, Processing Time 0.332 seconds

Chemical Analysis of Cuticular Hydrocarbons in Apis mellifera L. and Apis cerana F. (동양종과 서양종 꿀벌의 표피탄화수소 성분 분석)

  • 이창주;신경우;박승찬;심재한
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.9-13
    • /
    • 2003
  • Cuticular hydrocarbons of antenna, legs and wings from two species of honeybee worker of Apis mellifera L. and Apis cerana F. can be analyzed directly with gas chromatograph and GC/MS without solvent extraction. The saturated hydrocarbons identified in selected part of both species were nC22, nC23, nC25-nC3O, nC32 and nC34 except nC24. Two saturated hydrocarbons, nC26 (23.0-42.6%) and nC28 (16.8-54.8%), were major compounds in both species and others were minor compounds. A. mellifera can be distinguished from A. cerana F. by having higher proportion of nC30, nC32 and nC34 by having lower proportion of nC25 from three selected part of both species.

Comparison of Cuticular Hydrocarbons of Different Developmental Stages of the Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae) (꽃매미(Lycorma delicatula)의 발육단계별 표피탄화수소 비교)

  • Cho, Sun-Ran;Lee, Jeong-Eun;Jeong, Jin-Won;Yang, Jeong-Oh;Yoon, Chang-Mann;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.50 no.3
    • /
    • pp.185-194
    • /
    • 2011
  • Aliphatic cuticular hydrocarbons (CHCs) of different developmental stages of the spot clothing wax cicada, Lycorma delicatula (Hemiptera: Fulgoridae) were analyzed using GC and GC-MS. The numbers of carbons in the major CHCs of each developmental stage 32, 33, 28, 38, 37 in the egg, 1st, 2nd, 3rd, and 4th instar nymphal stages, and adults, respectively. The cuticle of Lycorma delicatula contains mainly methyl-branched 9-methylheptacosane (15.11%) in the egg stage, and a high proportion of n-heptacosane in nymphal stages (15.75, 22.42, 25.04, and 23.11 % in the 1st, 2nd, 3rd and 4th instars, respectively). In contrast, male and female adults had high proportions of n-nonacosane (13.42 and 16.55%). The chemical constituents of CHCs were classified into five groups (n-alkanes, monomethylalkanes, dimethylalkanes, trimethylalkanes, olefins) and group profiles of each developmental stage were compared. Egg surface was composed mainly monomethylalkanes (45.39%), a saturated hydrocarbon. Nymph CHCs consisted primarily of n-alkanes (37.63 to 46.12%). There was a difference between adult male and female CHCs. However, both contained n-alkanes and monomethylalkanes. CHCs with trimethyl or double bonded structure were rare in all stages.

Macroscopic Analysis on Supercritical Transition of Liquid Hydrocarbon Fuel (액체탄화수소의 초임계 천이과정에 대한 거시적 특성 분석)

  • Shin, Bongchul;Kim, Dohun;Son, Min;Lee, Keunwoong;Song, Wooseok;Koo, Jaye;Kwon, Oh Chae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.26-33
    • /
    • 2016
  • In order to analyze supercritical transition of liquid hydrocarbon fuel which used propulsion engine, visualization of phase changing using Methylcyclohexane (MCH) was performed. Also, measurements of temperature and pressure were conducted to obtain saturation lines of MCH and Decane. delayed increase of the pressure existed near the critical point due to dramatical increase of specific heats and the critical opalescence was only observed from the end point of delaying to the critical point. Beyond the critical point, the boundary between phases disappeared and the strong density gradient was observed. As the comparison between experimental and numerical saturation lines, the numerical estimation for mixture had relatively little difference while the results of pure components had almost coincidence.

Catalytic degradation of waste plastics over solid acid catalysts (고체 산촉매에서 폐플라스틱의 분해 반응)

  • 이경환;전상구;김광호;노남선;신대현;서영화
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.185-186
    • /
    • 2002
  • 폐 플라스틱은 석유 물질인 탄화수소로 구성하고 있지만 효과적으로 재활용되지 못하고 대부분 매립, 소각 등의 방법으로 처리하고 있다. 플라스틱은 다양한 용도로 사용되기 때문에 플라스틱의 이용과 소비의 증가는 필연적이다. 예로 미국 가정의 폐 플라스틱은 63% 폴리에틸렌, 11% 폴리프로필렌, 11% 폴리스타이렌, 7% PET 그리고 7% PVC가 발생되는데 이들 화합물 구조가 포화탄화수소형이기 때문에 70% 정도가 방향족 화합물인 석탄에 비해 수소첨가 반응이 요구되지 않는다.(중략)

  • PDF

A Study on the Catalytic Property of Pt/γ-Al2O3 on the Dehydrocyclization of Paraffins (포화탄화수소의 탈수소고리화 반응에 관한 촉매특성 연구)

  • Lee, Santg-Hwa;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.4 no.3
    • /
    • pp.569-575
    • /
    • 1993
  • The addition of Sn to Pt/${\gamma}$-$A1_2O_3$ catalyst greatly enhanced the activity and decreased the deactivation rate for the dehydrocyclization of paraffins. For the dehydrocyclization of n-octane, there appeared to be an optimal ratio of Pt:Sn=1:4 for 0.75 wt% Pt/${\gamma}$-$A1_2O_3$ catalyst. The addition of K to Pt/${\gamma}$-$A1_2O_3$ also produced a similar effect on the dehydrocyclization of n-hexane. In the case of n-octane, the addition of K led to a less selective catalyst.

  • PDF

Hydrogenation of Polycyclic Aromatic Hydrocarbons Over Pt/Kieselguhr Catalysts in a Trickle Bed Reactor (Trickle Bed Reactor에서 Pt/Kieselguhr 촉매를 이용한 다환방향족 탄화수소 수소화 반응)

  • Seung Kyo, Oh;Seohyeon, Oh;Gi Bo, Han;Byunghun, Jeong;Jong-Ki, Jeon
    • Clean Technology
    • /
    • v.28 no.4
    • /
    • pp.331-338
    • /
    • 2022
  • The objective of this study is to prepare bead-type and pellet-type Pt (1 wt%)/Kieselguhr catalysts as hydrogenation catalysts for the polycyclic aromatic hydrocarbons (PAHs) included in pyrolysis fuel oil (PFO). The optimal reaction temperature to maximize the yield of saturated cyclic hydrocarbons during the PFO-cut hydrogenation reaction in a trickle bed reactor was determined to be 250 ℃. A hydrogen/PFO-cut flow rate ratio of 1800 was found to maximize 1-ring saturated cyclic compounds. The yield of saturated cyclic compound increased as the space velocity (LHSV) of PFO-cut decreased. The difference in hydrogenation reaction performance between the pellet catalyst and the bead catalyst was negligible. However, the catalyst impregnated by Pt after molding the Kieselguhr support (AI catalyst) showed higher hydrogenation activity than the catalyst molded after Pt impregnation on the Kieselguhr powder (BI catalyst), which was a common phenomenon in both the pellet catalysts and bead catalysts. This may be due to a higher number of active sites over the AI catalyst compared to the BI catalyst. It was confirmed that the pellet catalyst prepared by the AI method had the best reaction activity of the prepared catalysts in this study. The majority of the PFO-cut hydrogenation products were cyclic hydrocarbons ranging from C8 to C15, and C11 cyclic hydrocarbons had the highest distribution. It was confirmed that both a cracking reaction and hydrogenation occurred, which shifted the carbon number distribution towards light hydrocarbons.

Comparison of Cuticular Hydrocarbons of the Pine Sawyer (Monochamus saltuarius), Japanese Pine Sawyer (Monochamus alternatus) and Oak Longicorn Beetle (Moechotypa diphysis) (북방수염하늘소(Monochamus saltuarius), 솔수염하늘소(Monochamus alternatus), 털두꺼비하늘소(Moechotypa diphysis) 성충의 표피탄화수소 비교)

  • Lee, Jeong-Eun;Kim, Eun-Hee;Yoon, Chang-Mann;Kim, Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.49 no.3
    • /
    • pp.211-218
    • /
    • 2010
  • Cuticular hydrocarbons (CHCs) of the pine sawyer (Monochamus saltuarius), Japanese pine sawyer (M. alternatus) and oak longicorn beetle (Moechotypa diphysis) were analyzed by GC, GC-MS and compared. Monochamus beetles are typical vectors of pine wilt disease but Moechotypa diphysis, which belongs to the same family, is not. They possess different CHCs in carbon number: 23-25 in M. saltuarius, 25-32 in M. alternatus, and 23-29 in M. diphysis. In comparison to inter-species, these three species of adult beetles have different numbers and chains of constituents of CHCs. In comparison between male and female in intra-species, the quantities of CHCs show the difference but constituents are not. Major constituent of M. saltuarius were analyzed as n-pentacosane > n-nonacosane > n-heptacosane; those of M. alternatus were n-nonacosene > n-pentacosane > n-nonacosane; and those of M. diphysis were n-heptacosane > 13-methylheptacosane > 3-methylheptacosane. From the body surface, most saturated carbohydrates of 3 species beetles are composed of n-alkane (40.2 - 65.7%) and followed by olefines > monomethylalkanes that one or two double bonds in M. saltuarius and M. alternatus. Otherwise, M. diphysis have the difference in order of monomethylalkanes > olefins.

Modeling of Thermodynamic Properties of Saturated state Hydrogen using Equation of State (상태방정식을 이용한 포화상태 수소의 열역학적 물성 모델링)

  • Bong-Seop Lee;Hun Yong Shin;Choong Hee Joe
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.550-554
    • /
    • 2023
  • Fossil energy sources are limited in their sustainable use and expansion due to global warming caused by carbon dioxide emissions. Hydrogen is considered as a promising alternative to traditional fossil fuels. To ensure the stable long-term storage, it is necessary to accurately predict its thermodynamic properties at cryogenic temperatures. Therefore, this study aimed to investigate thermodynamic properties, such as saturated vapor pressure and density, enthalpy, and entropy of liquid and gas, using cubic equations of state that demonstrate relatively simple relationships. Among the three types of equations of state (Redlich-Kwong (RK), Soave-Redlich-Kwong (SRK), and Peng-Robinson (PR)), the SRK model exhibited relatively accurate prediction results for various physical properties.

Study on the Convergency Improvement Method for the Saturation-Property Calculation of Multi-Component Hydrocarbon Systems (다성분 탄화수소혼합물 포화물성해석 수렴도 향상 연구)

  • Shin, Chang-Hoon;An, Seung-Hee;Lee, Jeong-Hwan;Sung, Won-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.10
    • /
    • pp.947-955
    • /
    • 2010
  • Most oil and gas reservoirs, which have some light hydrocarbon components, show sensitive phase behavior in response to changes in the composition of the internal fluid. When evaluating and developing plans for oil and gas fields, flash calculation, PVT analysis, and saturation-property calculation are necessary for analyzing reservoir characteristics and pipeline flows. In general, the determination of saturation properties such as dew point and bubble point is considered a difficult task because of the poor convergence of the calculation methods. In this study, several new initial-value-guessing methods and root-finding methods are proposed; parametric analysis were carried out to verify the improvement in convergence. Finally, these new ideas and methods were successfully applied to the new GUI based multi-phase behavior simulator.

The Rheological Behaviors and Non-Newtonian Characteristics of Maltenes Made by SDA Method from Oil Sands Bitumen (SDA 방법으로 제조한 오일샌드 역청의 말텐에 대한 유변학적 거동 및 비뉴톤 특성)

  • Kwon, Eun Hee;Lee, Eun Min;Kim, Min Yong;Chang, Heyn Sung;Guahk, Young Tae;Kim, Kwang Ho;Nho, Nam Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.209-214
    • /
    • 2014
  • In this paper, the rheological behaviors and non-Newtonian characteristics of maltenes which is effected by hydrocarbon solvent type, solvent mixing ratio, temperature and shear rate was measured and compared with oil sands bitumen. Maltenes was made by SDA (solvent deasphalting) method from oil sands bitumen. Oil sands bitumen had apparent viscosities of $800{\sim}150000mPa{\cdot}s$ measured at a shear rate of $50sec^{-1}$ in the range of $25{\sim}85^{\circ}C$ and showed yield stress of 0.1~0.3 Pa at the temperatures below $35^{\circ}C$. All the oil sands bitumen and maltenes exhibited a shear-thinning, i.e. pseudoplastic behavior and apparent viscosity of maltenes decreased with decreasing carbon numbers of hydrocarbon solvent. The change in apparent viscosity with temperature could be described by the simple Guzman-Andrade equation, and maltene viscosities were decreased as the mixing ratio of n-pentane was raised. Also, all maltenes approached to Newtonian fluid as temperature were increased. the degree of pseudoplasticity was enhanced with decreasing carbon number of solvent.