DOI QR코드

DOI QR Code

SDA 방법으로 제조한 오일샌드 역청의 말텐에 대한 유변학적 거동 및 비뉴톤 특성

The Rheological Behaviors and Non-Newtonian Characteristics of Maltenes Made by SDA Method from Oil Sands Bitumen

  • 권은희 (한국에너지기술연구원 기후변화본부) ;
  • 이은민 (한국에너지기술연구원 기후변화본부) ;
  • 김민용 (한국에너지기술연구원 기후변화본부) ;
  • 장현성 (한국에너지기술연구원 기후변화본부) ;
  • 곽영태 (한국에너지기술연구원 기후변화본부) ;
  • 김광호 (한국에너지기술연구원 기후변화본부) ;
  • 노남선 (한국에너지기술연구원 기후변화본부)
  • Kwon, Eun Hee (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Lee, Eun Min (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kim, Min Yong (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Chang, Heyn Sung (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Guahk, Young Tae (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Kim, Kwang Ho (Climate Change Research Division, Korea Institute of Energy Research) ;
  • Nho, Nam Sun (Climate Change Research Division, Korea Institute of Energy Research)
  • 투고 : 2014.02.18
  • 심사 : 2014.03.25
  • 발행 : 2014.04.10

초록

SDA (Solvent deasphalting)를 이용한 오일샌드 역청의 부분경질화 공정을 개발하기 위해 수행된 본 연구에서는 말텐에 대하여 포화탄화수소 용매의 종류, 용매 투입 비율, 온도, 전단속도 등에 따른 유변학적 거동과 비뉴톤 특성을 살펴보았다. 오일샌드 역청은 전단속도가 $50sec^{-1}$이고, 온도가 $25{\sim}85^{\circ}C$인 조건에서 $800{\sim}150000mPa{\cdot}s$의 겉보기 점도를 보이며, $35^{\circ}C$ 이하에서는 0.1~0.3 Pa의 항복응력을 나타냈다. 오일샌드와 말텐은 모두 Pseudoplastic의 특성을 보이고 포화탄화수소 용매의 탄소 수가 낮아질수록 말텐의 겉보기 점도는 감소하였다. 겉보기 점도와 온도와의 상관관계는 Guzman-Andrade식으로 나타낼 수 있었으며, n-Pentane의 투입 비율이 커짐에 따라 말텐의 점도가 감소하였다. 또한 온도가 높아질수록 말텐은 뉴톤 유체에 접근하였고, 용매로 사용된 포화탄화수소의 탄소 수가 작아질수록 비뉴톤 성질은 증가하였다.

In this paper, the rheological behaviors and non-Newtonian characteristics of maltenes which is effected by hydrocarbon solvent type, solvent mixing ratio, temperature and shear rate was measured and compared with oil sands bitumen. Maltenes was made by SDA (solvent deasphalting) method from oil sands bitumen. Oil sands bitumen had apparent viscosities of $800{\sim}150000mPa{\cdot}s$ measured at a shear rate of $50sec^{-1}$ in the range of $25{\sim}85^{\circ}C$ and showed yield stress of 0.1~0.3 Pa at the temperatures below $35^{\circ}C$. All the oil sands bitumen and maltenes exhibited a shear-thinning, i.e. pseudoplastic behavior and apparent viscosity of maltenes decreased with decreasing carbon numbers of hydrocarbon solvent. The change in apparent viscosity with temperature could be described by the simple Guzman-Andrade equation, and maltene viscosities were decreased as the mixing ratio of n-pentane was raised. Also, all maltenes approached to Newtonian fluid as temperature were increased. the degree of pseudoplasticity was enhanced with decreasing carbon number of solvent.

키워드

참고문헌

  1. H. S. Yeon, C. S. Woo, and K. H. Kang, Extraction and Vacuum Distillation Characteristics of Oil Sand Bitumen Using Solvent, Appl. Chem., 12, 361 (2008).
  2. K. H. Kim et al., Physical and Chemical Characteristics of Solvent-Insolubles and Solvent-Solubles in Oilsands Bitumen, J. Energy Eng., 17, 38 (2008).
  3. N. S. Nho et al., Development of next-generation integrated upgrading process for extra-heavy oil fractions., Korea Institute of Energy Research (2009).
  4. P. R. Robinson and G. E Dolbear, Practical Advances in Petroleum Processing., Springer New York, 1, 178 (2006).
  5. F. A. N. Fernandes, and U. M. Teles, Modeling and optimization of Fischer-Tropsch products hydrocracking, Fuel Process. Technol., 88, 207 (2007). https://doi.org/10.1016/j.fuproc.2006.09.003
  6. M. S. Rana, V. Sámano, J. Ancheyta, and J. A. I. Diaz, A review of recent advances on process technologies for upgrading of heavy oils and residua, Fuel, 86, 1216 (2007). https://doi.org/10.1016/j.fuel.2006.08.004
  7. N. S. Nho et al., Feasibility Study about Upgrading Package Process for the Production of Synthetic Crude Oil & Petrochemical Feedstocks from Low-Cost Heavy Oils., Korea Institute of Energy Research (2012).
  8. V. Samano, F. Guerrero, J. Ancheyta, F. Trejo and J. A. I. Diaz, A batch reactor study of the effect of deasphalting on hydrotreating of heavy oil, Catal. Today, 150, 264 (2010). https://doi.org/10.1016/j.cattod.2009.09.004
  9. M. A. Hasan and J. M. Shaw, Rheology of Reconstituted Crude Oils : Artifacts and Asphaltenes, Energy Fuels, 24, 6417 (2010). https://doi.org/10.1021/ef101185x
  10. A. B. Bazyleva, M. A. A. Hasan, M. Fulem, M. Becerra, and J. M. Shaw, Bitumen and Heavy Oil Rheological Properties: Reconciliation with Viscosity Measurement, Appl. Chem. Eng., 55, 1389 (2010).
  11. S. W. Hasan, M. T. Ghannam and N. Esmail, Heavy crude oil viscosity reduction and rheology for pipeline transportation, Fuel, 89, 1095 (2010). https://doi.org/10.1016/j.fuel.2009.12.021
  12. M. R. Khan, Rheological Properties of Heavy Oil and Heavy Oil Emulsions, Energy Sources, 18, 385 (1996). https://doi.org/10.1080/00908319608908777
  13. J. M. Lee, Study on the properties of deasphalted oil (DAO) and DAO/solvent separation, MS Thesis Korea University (2012).
  14. Annual Books of ASTM Standards, D 3279-97 : Standard Test Method for n-Heptane Insolubles (2001).

피인용 문헌

  1. Evaluation of residual products from heavy oil refining for the use as an asphalt pavement material vol.18, pp.1, 2014, https://doi.org/10.1080/14680629.2016.1146160