• Title/Summary/Keyword: 포화된 점성토

Search Result 17, Processing Time 0.02 seconds

Suction Effect during Pullout of Anchors in Clay (점성토에 근입된 앵커들의 상향 인발시 흡입효과)

  • Shin, Bang Woong;Shin, Eun Chul;Lee, Jun Dae;Das, Braja M.
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1433-1438
    • /
    • 1994
  • Laboratory model test results for uplift capacity of a circular plate anchors embedded in saturated clayey soils have been presented. Clayey soils used in this study are kaolinite and montmorillonite. Suction effects on the ultimate uplift capacity of plate anchors with respect to various embedment depths of anchor have been considered.

  • PDF

Critical face pressure and backfill pressure of shield TBM considering surface settlements of saturated clayey ground (쉴드 TBM 굴진에 따른 포화 점성토 지반의 침하거동을 고려한 한계 굴진면압과 한계 뒤채움압)

  • Kim, Kiseok;Oh, Ju-Young;Lee, Hyobum;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.433-452
    • /
    • 2018
  • The shield tunneling method can minimize surface settlements by preventing the deformation of tunnel face and tunnel intrados due to tunnel excavation. For this purpose, it is very important to control the operating conditions of shield TBM. The face pressure and backfill pressure for tail void grouting should be the most important and immediate measure not only to restrain surface settlement, but also to influence the effective stress and pore water pressure around the circumstance of tunnel during excavation. The reaction of the ground to the application of face pressure and backfill pressure relies on the stiffness and permeability of ground. Especially, the reaction of saturated clayey ground formations, which shows the time-dependent deformation, is different from the permeable ground. Hence, in this paper it was investigated how the TBM operating conditions, ground stiffness, and permeability impact on the surface settlement of saturated clayey ground. For this purpose, a series of parametric studies were carried out by means of the stress-pore water pressure coupled FE analysis. The results show that the settlement of soft clayey ground is divided into the immediate settlement and consolidation settlement. Especially, the consolidation settlement depends on the ground stiffness and permeability. In addition, the existence of critical face pressure and backfill pressure was identified. The face pressure and backfill pressure above the critical value may cause an unexpected increase in the ground settlement.

Thermal Conductivity of Saturated Unfrozen Kaolinite during Consolidation (포화된 카올리나이트의 압밀에 따른 열전도계수에 관한 연구)

  • Kim, Hak-Seung;Lee, Jang-Guen;Kang, Jae-Mo;Kim, Young-Seok;Hong, Seung-Seo
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.157-162
    • /
    • 2011
  • Experimental tests have been performed to measure the thermal conductivity of unsaturated soils, and computational models have been widely used to predict thermal conductivity. However, measured values of the thermal conductivity of unsaturated soils cannot be compared with predicted values because of the gradient in moisture content within unsaturated soils. In this study, experimental consolidation tests on saturated unfrozen kaolinite were performed to investigate the effect of dry density and moisture content on thermal conductivity. The results were used to evaluate the validity of a model employed to calculate thermal conductivity.

Experimental Study on Grout Shape in Sandy Soils (사질토지반에서의 그라우트체 형상에 관한 실험 연구)

  • Nguyen, Duc Thanh;Sim, Young-Jong;Cho, Gye-Chun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.283-286
    • /
    • 2007
  • 지반을 보강 또는 지하수를 차단하기 위해 실시되는 그라우팅과 같은 공법이 제대로 효과를 발휘하기 위해서는 bulging 또는 sheet 형태의 그라우트체 형상의 조절이 필수적이다. 본 논문에서는 이러한 그라우트체 형상에 영향을 끼치는 인자를 찾기 위해 포화된 사질토지반에서의 그라우트 실험을 다수 실시하였다. 그라우트의 주입속도와 점성의 크기, 사질토의 상대밀도와 입도크기의 인자를 사용하여 실험을 사용한 결과, 비교적 느린 주입속도와 작은 상대밀도, 그라우트의 점성과 입자가 클수록 bulging 형상의 그라우트체가 형성이 되었다. 이와는 반대로 빠른 주입속도와 높은 상대밀도, 그리고 그라우트의 점성과 흙 입자가 작을수록 sheet 형상의 그라우트체가 형성이 됨을 확인하였다.

  • PDF

A Practical App개ach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part I (Evaluation and Use of Characteristic Deformation Behaviors) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part I (특성변형거동의 평가와 활용))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.83-98
    • /
    • 2005
  • In this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. In the proposed approach, settlement-related characteristic deformation behaviors of a specific clay deposit, which can cover all probable stress changes expected in the field, are experimentally evaluated in advance. Then settlements of various structures constructed on the deposit are easily estimated with only the characteristic deformation behaviors and without any additional experimental effort. In Part I of this paper, in order to provide practicality to the new conceptual approach, we developed a detailed procedure which is capable of evaluating characteristic deformation behaviors of a saturated clay deposit with only a limited number of tests and easily predicting deformations under a given stress change using the characteristic deformation behaviors. The applicability of the developed procedure was clearly shown by presenting an actual application example.

Effects of Geosynthetic Reinforcement on Compaction of High Water Content Clay (토목섬유 보강이 고함수비 점성토의 다짐에 미치는 영향)

  • Roh Han Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.67-84
    • /
    • 2005
  • This research was conducted to evaluate the effectiveness of reinforcement for nearly saturated soft clay compaction. The effectiveness was investigated by roller compaction test using nearly saturated clay specimens. The nearly saturated condition was obtained by submerging clay in the water for 12 hours. High water content specimens were compacted in plane strain condition by a steel roller. A specimen was compacted by four 5 cm horizontal layers. Specimens were prepared fur both reinforced and unreinforced cases to evaluate the effectiveness of reinforcement. Used reinforcement is a composite consisted of both woven and non-woven geotextile. The composite usually provides drainage and tensile reinforcement to hi인 water-contented clay so that it increases bearing capacity. Therefore, large compaction load can be applied to reinforced clay and it achieves higher density effectively. The reinforcement also increases compaction efficiency because it reduces the ratio between shear and vertical forces during compaction process. The maximum vertical stress on the base of specimen usually decreased with higher compaction thickness. The reinforcement increases soil stiffness under the compaction roller and it initiates stress concentration. As a result, it maintains higher vertical stress level on the base of specimen that provides better compaction characteristics. Based on test results, it can be concluded that the reinforcement is essential to achieve effective compaction on soft clay.

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(I) - Analysis by Isotropic Loading Test - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(I) - 등방재하시험에 의한 분석 -)

  • 임성훈;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.126-136
    • /
    • 2003
  • The B value on the saturated soil is commonly known as the amount of 1. Usually this concept is consistent with the condition that effective stress is equal to zero, but it was reported in some literatures that the B value was less than 1 in spite of saturated condition in the test of very stiff material such as rock and quasi-stiff material on which the stiffness can be mobilized because of effective stress not equal to zero. In this study the B value was measured on various effective stress conditions on normally consolidated clay. The test results in the B value less than 1 in spite of perfect saturation. The measured excessive pore water pressure was not only smaller than the change of the total stress, but also the function of time on clay.

The Behavior of Undrained Pore Water Pressure in Normally Consolidated and Saturated Clay(II) - Visco Elastic Analysis Model - (포화된 정규압밀 점성토에서 비배수 공극수압의 거동(II) - 점탄성 해석 모델 -)

  • 임성훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.137-143
    • /
    • 2003
  • The initial condition of $\Delta \sigma_3 \;=\; \Delta u$ is used for analyzing the time dependent behavior of ground. This is based on the concept that the coefficient of pore water B is the unity on the condition of saturation. but some measured consolidation data in the field showed that the pore water pressure was not dissipated as time elapsed but it was maintained constant value or it's dissipation rate was slower than that of the predicted. and so the measured data of pore water pressure was not consistent with that of settlement. In this study, the rheological model for the pore water pressure behavior on undrained condition was induced and compared with the experiment data of the literature. The result showed that the suggested model was consistent well with the result of experiment, but the suggested model could not explain the effect of the decrease of void ratio according to consolidation.

A Practical Approach of Stress Path Method for Rational Settlement Estimation of Saturated Clay Deposit : Part II (Settlement Estimation Procedure and Application Examples) (포화 점성토지반 침하량의 합리적 평가를 위한 실용적인 응력경로법 적용방법 : Part II (침하량 평가절차와 적용예제))

  • Kim Chang-Youb;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.99-114
    • /
    • 2005
  • In Part I of this paper, a conceptual approach of the stress path method was newly proposed for a rational estimation of settlements of saturated clay deposits. A detailed procedure for effective evaluation and use of settlement-related characteristic deformation behaviors was developed in order to provide practicality to the new approach. In this Part II, on the basis of the results of Part 1, the concept of the new approach was embodied in the form of a detailed settlement estimation procedure. The applicability and usefulness of the new procedure were strongly supported by various application examples. In addition, possible errors of other conventional settlement estimation methods were investigated by comparing with the new procedure. Because of its flexible applicability for wide range of field conditions, the new procedure will have great usefulness in the practical side. For example, a reasonable foundation design based on allowable settlement criteria can be easily performed and modification of design factors can be readily reflected even during the subsequent construction stage. Especially, the new procedure will be of great use for preliminary work in a large scale construction site where various structures are planned to be constructed on a nearly identical ground condition.

Bearing Capacity of Shallow Foundation on Geogrid-Reinforced Clay (지오그리드로 보강된 점성토사의 얕은 기초의 지지력)

  • Shin, Bang Woong;Das, Braja M.;Shin, Eun Chul;Chung, Kee Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1439-1444
    • /
    • 1994
  • Laboratory model test results for the ultimate bearing capacity and allowable bearing capacity at various settlement levels conducted on a strip foundation supported by geogrid-reinforced clay soil have been presented. For mobilization of the maximum possible load-carrying capacity, the optimum width and depth of the reinforcement layers, and the location of the first layer of reinforcement with respect to the bottom of the foundation have been determined.

  • PDF