• Title/Summary/Keyword: 포크리프트

Search Result 8, Processing Time 0.031 seconds

An Automatic Engagement Robot System Using Combined Acoustic and Visual Sensors (결합된 음향 및 시각 센서를 사용한 자동 인게즈먼트 로봇 시스템)

  • 장종환;양우석;정재길
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.10
    • /
    • pp.1444-1453
    • /
    • 1993
  • 비 구조적인 주면 환경에서 평면 팔레트(planar pallet)를 포크리프트(forklift)로 적재하거나 하역하기 위한 물류용 재료운송 로보트 시스템을 제안한다. 제안한 시스템은 음향(acoustic)센서와 시각(visual) 센싱데이타를 사용하여 팔레트에 지정된 2개의 스롯(slot)의 위치를 결정하고 포크리프트를 팔레트의 스롯에 인게즈(engage) 한다. 본 연구에서는 재료운송 시스템의 복잡성을 줄이기 위해서 폴라로이드(Poraloid) 음향센서의 3차원 거리 데이터와 CCD 카메라에서 얻은 2차원 시각 네이타를 통합하는 방법을 개발한다. 2개의 다른 소스로부터 얻은 데이타는 서로의 미비점을 보안하며 재료운송 로보트 시스템을제어하기 위한 효율적인 알고리즘을 제공한다. 카메라는 far-away vision 개념에 의한 음향센서의 선형 스캔닝(scanning) 대역을 우선 결정한다. 선형 스캔닝에 의하여 얻어지는 거리 데이타(range Map)는 least mean square방법을 사용하여 팔레트의 위치와 자세(position and orientation)를 결정한다(near vision). 팔레트에 대한 위치와 자세가 결정되면 다시 시각센서를 이용하여(close vision) 에지(edge)탐지와 Hough transfrom 기술을 적용하여 팔레트에 대한 포크리프트의 인게이지먼트 위치를 구한다. 개발된 시스템은 하드웨어와 소프트웨어로 구현하고 평가하며 실험적인 결과도 제시한다.

  • PDF

Development of Modeling Technique for Prediction of Driving Force and Kinetic Resistance of Agricultural Forklift (농업용 포크리프트의 구동력 및 운동저항 예측을 위한 모델링 기법 개발)

  • Jo, Jae-hyun;Kim, Jun-tae;Jeong, Jin-hyoung;Chang, Young-yoon;Park, Won-yeop;Lee, Sang-sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.299-305
    • /
    • 2019
  • This study was initiated to solve the difficulties of aged and female workers in agriculture society due to aging and demise of young people. In the case of the conventional elevated lift, the risk of exposure to uneven road or work environment, not the difficulty of professional qualification and operation, and the risk of exposure to the uneven road or working environment, were also studied based on previous researches so that women could easily and efficiently perform productive agriculture. First, the simulation was carried out through the prediction model of traction performance using the object of agricultural forklift, and the soil of the Kimhae city in Gyeongnam (34.125kPa, internal friction angle 35.294deg, external friction angle 13.620deg, Adhesion force 5.750 kPa, average cone index 0-15 cm cl, 1001.8 kPa). In the case of the forklift for simulation, the driving force and the kinetic resistance prediction modeling of the agricultural electric forklift are modeled. Based on this model, the motor control drive adopts the 1232E model, which is a drive dedicated to AC motor, and divides the two drivers into master and slave And the model for the simulation was designed to control motor drive, hydraulic drive, and various outputs on the main PCB. The simulation model is undergoing continuous simulation, modification and supplementation. Based on this research, we will continue research for development of safer and more efficient agricultural electric forklift.

Multi-sensor Intelligent Robot (멀티센서 스마트 로보트)

  • Jang, Jong-Hwan;Kim, Yong-Ho
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • A robotically assisted field material handling system designed for loading and unloading of a planar pallet with a forklift in unstructured field environment is presented. The system uses combined acoustic/visual sensing data to define the position/orientation of the pallet and to determine the specific locations of the two slots of the pallet, so that the forklift can move close to the slot and engage it for transport. In order to reduce the complexity of the material handling operation, we have developed a method based on the integration of 2-D range data of Poraloid ultrasonic sensor along with 2-D visual data of an optical camera. Data obtained from the two separate sources complements each other and is used in an efficient algorithm to control this robotically assisted field material handling system . Range data obtained from two linear scannings is used to determine the pan and tilt angles of a pallet using least mean square method. Then 2-D visual data is used to determine the swing angle and engagement location of a pallet by using edge detection and Hough transform techniques. The limitations of the pan and tilt orientation to be determined arc discussed. The system developed is evaluated through the hardware and software implementation. The experimental results are presented.

  • PDF

Trouble type and preventive countermeasure of loading facilities in Busan harbor (부산항 하역장비에서 발생하는 고장형태와 예방대책)

  • 한근조;전영환;심재준;한동섭;김병진
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.189-196
    • /
    • 2002
  • As the quantity of transported goods increases, there is a lot of mechanical trouble with loading facilities. So it tremendously produces not only economic loss but also time loss. To reduce the loss from the trouble of leading facilities, it is necessary to analyse the distribution of the problem's occurrence and use the analyzed data to minimize the outbreak of trouble. So the data can be usefully used when designing or manufacturing and it also can be utilized for proper maintenance of operating equipment, frequency of inspection and repair, know-how of checking on equipment and purchasing of spare parts. And it is possible to minimize the loss if the propel maintenance is adapted

  • PDF

A Study on Performance Analysis and Hydraulic Control System Design of Forklift Structure Manipulator with 5 Joints for Untact Working in Limited Environment (극한 환경에서의 비대면 작업을 위한 소비자 친화형 포크리프트 구조의 5축 매니퓰레이터의 유압제어 시스템 설계 및 성능분석에 대한 연구)

  • Kim, Hee jin;Kim, Sung il;Han, Sung hyun;Yoon, Kyeong hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.477-491
    • /
    • 2022
  • This study proposed the performance analysis and hydraulic control system design of forklift structure manipulator with 5 joints for untact working in lilited environment. The performance analysis of the control system analyzed the control response to load and pressure fluctuations. The reliability of proposed control system was verified by simulation test under the various condition.

Development of Forklift-Type Automated Guided Vehicle(AGV) with Dual Steering Drive Unit (듀얼 조향구동 장치를 갖는 포크리프트 타입 무인운반차(AGV)의 개발)

  • Won, Chang-Yeon;Kang, Seon-Mo;Nahm, Yoon-Eui
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.145-153
    • /
    • 2021
  • Automated Guided Vehicle (AGV) is commonly used in manufacturing plant, warehouse, distribution center, and terminal. AGV is self-driven vehicle used to transport material between workstations in the shop floor without the help of an operator, and AGV includes a material transfer system located on the top and driving system at the bottom to move the vehicle as desired. For navigation, AGV mostly uses lane paths, signal paths or signal beacons. Various predominant sensors are also used in the AGV. However, in the conventional AGV, there is a problem of not turning or damaging nearby objects or AGV in a narrow space. In this paper, a new driving system is proposed to move the vehicle in a narrow space. In the proposed driving system, two sets of the combined steering-drive unit are adopted to solve the above problem. A prototype of AGV with the new driving system is developed for the comparative analysis with the conventional AGV. In addition, the experimental result shows the improved performance of the new driving system in the maximum speed, braking distance and positioning precision tests.

Receipt and issue model for Automated Warehouse based of Mobile rack (모바일랙 기반 자동화 창고 입출고 운영모델 연구)

  • Shin, Jae-Young;Park, Jong-won;Kim, Hwan-sung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2016.05a
    • /
    • pp.211-212
    • /
    • 2016
  • It is important to adopt an operation system to operate the Automated warehouses using limited resources such as space, mobile racks, and forklift. The main purpose from the operation system is to reduce the length of moving and time for both mobile racks and forklift. The complexity of the warehouse will be higher because the racks and vehicles are moving at the same time. This complexity influences badly so the operation system has to control it well. Not only layout or receipt or issue, but also conflict between mobile racks and vehicles give more complexity to the warehouse. This paper aims to fine the proper operation method related to the layout and the cargo assignment.

  • PDF