• Title/Summary/Keyword: 포장재

Search Result 1,363, Processing Time 0.032 seconds

Research of Chemical Properties of Soil and Growth Characteristics of Panax ginseng under Organic and Conventional Cultivation Systems in Korea (국내 유기와 관행 재배 인삼의 토양화학성과 생육 특성 조사)

  • Lim, Jin-Soo
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.435-451
    • /
    • 2016
  • The objective of the present study was to perform a comparative analysis of the chemical properties of the cultivation site soil and growth characteristics of organically and conventionally cultivated ginseng (Panax ginseng C. A. Meyer). Organically and conventionally cultivated ginseng samples (4-, 5-, and 6-year-old) were collected from 52 fields at 14 locations throughout Korea. The samples were collected over three years from 2013 to 2015, with the collection period between October and November of each year. In order to increase the yield of organically cultivated ginseng, the amount of nutrients was increased to match that of the conventional cultivation system, which highlights the need for proper management in accordance with the standards for chemical properties of soil. Growth duration of organic ginseng was ${\geq}60days$ shorter than that of conventional ginseng and its average yield per 1ha was 60% than that of conventional ginseng. Root weight of organically cultivated ginseng was approximately 54% that of conventionally cultivated ginseng. Rhizome diameter and body shape index of organically cultivated ginseng were lower than those of conventionally cultivated ginseng, indicating that organically cultivated ginseng was thinner and longer than conventionally cultivated ginseng. Root length was greater in 5-year-old conventionally cultivated ginseng with a low percentage of paddy-upland rotation fields. The number of rootlets was lower in 5- and 6-year-old organically cultivated ginseng with a high percentage of direct seeding cultivation. Dry weight was distinctly lower in 5- and 6-year-old organically cultivated ginseng with early defoliation than that of conventionally cultivated ginseng. Incidences of notched belly and root rot tended to be higher in conventional cultivation, with the incidence of notched belly being distinctly higher in 4- and 6-year-old roots and root rot being more prevalent in 5- and 6-year-old roots. Red discoloration and eelworm damage, which are highly affected by soil moisture, were most common in the organically cultivated 4-year-old roots. Organically cultivated ginseng showed early defoliation than conventionally cultivated ginseng, as a result, its yield and weight were low, while the incidence of physiological disorders was low. In order to increase the yield of organically cultivated ginseng, studies on cultivation technology that can overcome early defoliation, as well as soil moisture management that can minimize physiological disorders, are required.

Role of Crops and Residues, and Fertilization to Changes of microbial Population, Soil chemical Properties and Plant Growth -I. Microbial Population in the Habitate (작물(作物)의 종류(種類)와 잔사(殘渣) 및 시비량(施肥量)이 토양미생물상(土壤微生物相), 이화학성(理化學性) 및 작물생육(作物生育)에 미치는 역할(役割) -I. 미생물상(微生物相) 변화(變化))

  • Kim, Seung-Hwan;Lee, Sang-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.370-377
    • /
    • 1992
  • A series of field and laboratory experimentes were conducted to find out the effects of kinds of crops residues and the different amount of fertilizer to the microbial interaction, chemical properties, plant growth and their interaction under continous cultivation of hot pepper, soybean, sesame and upland rice. The results obtained were summerized follows : 1. Total number of bacteria and actinomycetes were enhanced by cultivation of upland rice and soybean while no appreciable effects were obtained by the cultivation of hot pepper and sesame. 2. The number of bacteria, actinomycetes and fungi were increased by return of crop residues when the cultivation of hot pepper, soybean, sesame and upland rice. Specially, actinomycetes was remarkably increased by upland rice cultivation. 3. Increased amount of fertilizer were remarkably affected to decrease of number of soil microorganisms. Specially, actinomycetes succession was appearently affects while plant growing time. 4. The number of identified soil bacterial species were obtained high in order of Bacillus sp.>Rhizobium sp.>Agrobacterium sp.>Pseudomonas sp. The number of Gram positive bacteria were superior than that of Gram negative bateria. 5. Interaction between microbial succession and crops cultivation, the number of Bacillus sp. was increased in hot pepper, Rhizobium sp. was in soybean, and sesame, and Agrobacterium sp. were increased in soybean, respectively. 6. Survival and habitate of soil microorganisms were differ with kinds of crop, application of residue and fertilizers. Most high number of Bacillus sp. Rhizobium sp. and Pseudomonas sp. were obtained on the rhizoplane and rhizosphere while Agrobacterium sp. and Fusarium sp. were high in rhizosphere. 7. Factors in relation to change of soil microbial population was obtained high in order of climates>crops>organic>matter>fertilizer.

  • PDF

Alternative Concept to Enhance the Disposal Efficiency for CANDU Spent Fuel Disposal System (CANDU 사용후핵연료 처분시스템 효율향상 개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.169-179
    • /
    • 2011
  • There are two types of nuclear reactors in Korea and they are PWR type and CANDU type. The safe management of the spent fuels from these reactors is very important factor to maintain the sustainable energy supply with nuclear power plant. In Korea, a reference disposal system for the spent fuels has been developed through a study on the direct disposal of the PWR and CANDU spent fuel. Recently, the research on the demonstration and the efficiency analyses of the disposal system has been performed to make the disposal system safer and more economic. PWR spent fuels which include a lot of reusable material can be considered being recycled and a study on the disposal of HLW from this recycling process is being performed. CANDU spent fuels are considered being disposed of directly in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System (KRS) which was to dispose of both PWR type and CANDU type, the more effective CANDU spent fuel disposal systems were developed. To do this, the disposal canister for CANDU spent fuels was modified to hold the storage basket for 60 bundles which is used in nuclear power plant. With these modified disposal canister concepts, the disposal concepts to meet the thermal requirement that the temperature of the buffer materials should not be over $100^{\circ}C$ were developed. These disposal concepts were reviewed and analyzed in terms of disposal effective factors which were thermal effectiveness, U-density, disposal area, excavation volume, material volume etc. and the most effective concept was proposed. The results of this study will be used in the development of various wastes disposal system together with the HLW wastes from the PWR spent fuel recycling process.

Prediction Model for Accumulation and Decline of Exchangeable Potassium in Upland Soil with Long-Term Application of Fertilizer Potassium (가리질비료(加里質肥料) 연용(連用) 고추재배(栽培) 밭토양(土壤)의 치환성가리함량(置換性加里含量) 변동양상(變動樣相) 예측방법(豫測方法))

  • Jung, Beung-Gan;Yoon, Jung-Hui;Hwang, Ki-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.4
    • /
    • pp.342-346
    • /
    • 1996
  • Field experiments were conducted to investigate the mode of changes in exchangeable K contents in the soil under the continued(for three years) application of different levels of K fertilizer(KCl) with and without application of conventional compost(CC) and chicken-dung derived compost (CDC) for red pepper cultivation at two field parcels with different exchageable K contents on Gopyong silty loamy soil. The application of KCl at standard rate for red-pepper resulted in the increase in exchangeable K in the soil after each harvest of the crop. while no application of K and the application of KCl at one half of the standard rate tended to lower the exchangeable K in top soil with the cultivation of the crop. The application of compost in addition to KCl ammplified the difference in exchangeable K in the soil before and after the harvest of each crop. An equation could resonably well predict the exchageable K content in top soil after the years of crop cultivation, under different treatments. were developed.

  • PDF

Physical Properties of Organic Vegetable Cultivation Soils under Plastic Greenhouse (유기농 시설채소 재배지 토양의 물리적 특성변화)

  • Lee, Sang-Beom;Choi, Won-A;Hong, Seung-Gil;Park, Kwang-Lai;Lee, Cho-Rong;Kim, Seok-Cheol;An, Min-Sil
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.4
    • /
    • pp.963-974
    • /
    • 2015
  • This study was conducted to determine the effects of organic vegetable cultivation on the soil physical properties in 33 farmlands under plastic greenhouse in Korea. We were investigated 5~8 farms per organic vegetable crops during the period from August to November 2014. The main cultivated vegetables were leafy lettuce (Lactuca sativa L.), Perilla leaves (Perilla frutescens var. Japonica Hara), cucumber (Cucumis sativus L.), strawberry (Fragaria ananassa L.) and tomato (Lycopersicon spp.). We have analyzed soil physical properties. The measured soil physical parameters were soil plough layer, soil hardness, penetration resistance, three soil phase, bulk density and Porosity. The measurement of the soil plough layer, soil hardness and penetration resistance were carried out direct in the fields, and the samples for other parameters were taken using the soil core method with approximately 20 mm diameter core collected from each organic vegetable field. Soil plough layer was average 36 cm and ranged between 30 and 50 cm, and slightly different depending on the sorts of vegetable cultivation. The soil hardness was $0.17{\pm}0.15{\sim}1.34{\pm}1.02$ in the topsoil, $0.55{\pm}0.34{\sim}1.15{\pm}0.62$ in the subsoil. It was not different between topsoil and subsoil, but showed a statistically significant difference between the leafy and fruit vegetables. Penetrometer resistance is one of the important soil physical properties that can determine both root elongation and yield. The increase in density under leafy vegetables resulted in a higher soil penetrometer resistance. Soil is a three-component system comprised of solid, liquid, and gas phases distributed in a complex geometry that creates large solidliquid, liquid-gas, and gas-solid interfacial areas. The three soil phases were dynamic and typically changed in organic vegetable soils under greenhouse. Porosity was characterized as range of $54.2{\pm}2.2{\sim}60.3{\pm}2.4%$. Most measured soils have bulk densities between 1.0 and $1.6gcm^{-3}$. To summarize the above results, Soil plough layer has been deepened in organic vegetable cultivation soils. Solid hardness (the hardness of the soil) and bulk density (suitable for the soil unit mass) have been lowered. Porosity (soil spatial content) was high such as a well known in organic farmlands. Important changes were observed in the physical properties according to the different vegetable cultivation. We have demonstrated that the physical properties of organic cultivated soils under plastic greenhouse were improved in the results of this study.

Reproductive Growth and Competitive Ecology of Arrowhead (Sagittaria trifolia L.) - 2. Competition Ecology of Arrowhead (벗풀(Sagittaria trifolia L.)의 번식생장(繁殖生長) 및 경합생태(競合生態) - 2. 벗풀의 경합생태(競合生態))

  • Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.13 no.2
    • /
    • pp.151-158
    • /
    • 1993
  • This experiment was conducted in order to understand the intra-and the inter-competition of arrowhead, Sagittaria trifolia L., under the conditions of arrowhead monoculture and rice-mixed culture, respectively. In arrowhead monoculture, the infra-specific competition in both shoot length and floral axis number began at 10 plants per $0.5m^2$ and that in leaf number, leaf length, dry shoot weight and formated tuber number did at 5 plants per $0.5m^2$. In the inter-specific competition according to arrowhead density in the constant rice-mixed culture, the plant height and the tiller number of rice decreased at 15 and 5 plants of arrowhead per $0.5m^2$, respectively. The dry top weight and the formated tuber number of arrowhead decreased with increase of arrowhead density. In the inter-competition according to rice plant density in the constant arrowhead-mixed stands, the dry matter weight and the produced tuber number of arrowhead decreased with increase of rice plant density and the plant height and the tiller number of rice also did with that. In the different transplantation time of rice, the growth in arrowhead became less in order of late transplantation>standard one>early one and the plant height and the tiller number of rice became more in order of that by comparing the percentage of growth under the mixed culture to that under the arrowhead monoculture.

  • PDF

Worker Exposure and Volatilization Pattern of Cadusafos, Ethoprophos and Probenazole after Applying Granular Type Formulation on Soil in Greenhouse (시설재배지에서 토양처리농약 Cadusafos, Ethoprophos와 Probenazole 입제 처리 후 휘산 양상과 농작업자 노출)

  • Park, Byung-Jun;Lee, Ji-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.2
    • /
    • pp.160-165
    • /
    • 2011
  • BACKGROUND: This study carried out to fate of pesticide and investigate worker exposure of pesticide in air after applying granular type pesticide formulation on soil in greenhouse for preventing farmer's pesticide intoxication. METHODS AND RESULTS: The recovery of pesticide, cadusafos, ethoprophos and probenazole on absorbent in air were ranged 80.9~121.1% in charcoal and 90.6~99.0% in XAD-4, respectively. Emission rate of in lysimeter was higher 3~5 times than that of pesticides from topsoil not added water at $35^{\circ}C$ plot after applying a mixture of granular formulation and soil. The ethoprophos concentration in air, 50 cm high from soil surface at greenhouse, was reached the highest 186.4 ${\mu}g/m^3$ within 13 hours and were ranged 17.8~186.4 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 150 g a.i./245 $m^2$. The cadusafos concentration in air at greenhouse was reached the highest 37.3 ${\mu}g/m^3$ within 39 hours and were ranged 10.0~37.3 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 180 g a.i./245 $m^2$. The probenazole concentration in air at greenhouse was reached the highest 1.45 ${\mu}g/m^3$ within 37 hours and were ranged 0.23~1.45 ${\mu}g/m^3$ during 46 hours after applying granular formulation at dose rate 144 g a.i./245 $m^2$. CONCLUSION(s): The result of the reentry interval study demonstrated that reentry intervals for ethoprophos and cadusafos are longer than 48 hours.

Preparation and Characteristics of Bread by Medicinal Herb Composites with Immunostimulating Activity (면역활성을 가진 생약복합물을 이용한 빵의 제조 및 특성)

  • Kim, Hee-Suk;Kang, Jin-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.1
    • /
    • pp.109-116
    • /
    • 2008
  • In this study, the breads with medicinal herbs (MH) composites showing immunostimulating activity were prepared and their characteristics were examined. Fourteen kinds of medicinal herbs were extracted with hot water and divided into 3 groups (MH-1, MH-2, MH-3) based on their contents. All groups showed immunostimulating activity in terms of macrophage phagocytosis, nitrite production, cytostatic activity and cytokine production. In the preparation of breads containing MH extracts of various contents (0, 30, 50, 70, and 100%), there was no significant difference among dough pHs of all groups after first fermentation, but loaf volume was significantly (p<0.05) increased in 70% added group while decreased in 30%, 50%, and 100% added groups compared to the control. The "a" and "b" values of bread crumb increased with the content of MH extracts while "L" value decreased, but these values of bread crust were similar to the control group. Most improvements in hardness, adhesiveness, gumminess and chewiness of bread were noticed by the addition of 70% MH extracts, but those of springiness, cohesiveness and resilience were mostly by the 50% addition ones. Through the sensory evaluation, it was revealed that mouth feeling, taste and overall preference decreased at breads containing 70% and 100% extracts, although appearance and crumb texture were not significantly (p<0.05) different among all groups.

Effect of Potassium and Sulfur Powder on the Growth of Peanut Plant in Sandy Soil of Nak-dong Riverside (낙동강유역(洛東江流域) 사질(砂質)땅콩재배지(栽培地) 가리(加里) 및 유황분말(硫黃粉末) 시용효과(施用效果))

  • Kim, Chang-Bae;Park, Seon-Do;Park, No-Kwuan;Choi, Dae-Ung;Son, Sam-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.161-168
    • /
    • 1987
  • This study was conducted to evaluate the effects of potassium and sulfur power levels on the growth, nutrients' uptake at different growing stage and seed yield of peanut plant and changes of soil chamical properties in a sandy peanut cultivated soil of Nak-dong riverside in 1984. 1. The length of main stem, that of branch NO. and NO. of branches per plant were increased by the increased application of potassium and sulfur powdar. Especially sulfur powder treated plot were shown in positive effect with obtained in main root length, NO. of roots and Wt. of noudles formed per plant, roots' weight of peanut plant was much more than top's Wt. at harvesting stage, and so ratio of dry matter Wt. top/root was low. 2. The noudle's Wt. formed was positively significant recognized with dry matter Wt. of peanut plant at harvesting stage and the treatments of potassium were increased 7-20% compared with potassium non-treated plot and sulfur's treatments were increased 4-13% than that of potassium 15kg/10a treatment which was sulfur's non-treated plot in seed yield. 3. Relationship between all nutrients' uptake at flowering stage and seed yield were positively significant recognized, but $P_2O_5$ uptake and N/S ratio showed negative effect at harvesting stage of peanut plant. 4. By the increase of potassium and sulfur powder application, the soil pH at two different stages were almost not differential and the content of K, $P_2O$ and $SO_4$ in soil and $SO_4/P_2O_5$ ratio were increasing tendency.

  • PDF

Effects of Compressed Expansion Rice Hull Application and Drip Irrigation on the Alleviation of Salt Accumulation in the Plastic Film House Soil (팽화왕겨 처리와 점적관개에 의한 염류집적 시설재배지 염류경감 효과)

  • Cho, Kwang-Rae;Kang, Chang-Sung;Won, Tae-Jin;Park, Kyeong-Yeol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.6
    • /
    • pp.372-379
    • /
    • 2006
  • This study was carried out to improve chemical properties of salt-accumulated plastic film house soil. Compressed expansion rice hull was applied at 0, 2.5, 5.0, $7.5Mg\;ha^{-1}$, and drip irrigation was initiated at -33 kilopascals (kPa) of soil water potential and ceased adjusted up to -10 kPa. Another treatment was the application of inflated rice hull at $5.0Mg\;ha^{-1}$ with drip irrigation starting at soil water potential -20 kPa and adjusted to -10 kPa. Lettuce(Lactuca sativa L.) was cultivated at sandy loam soil with $5.1dS\;m^{-1}$ of electrical conductivity (EC). $EC_w$(1:5) of plots treated with $5.0Mg\;ha^{-1}$ of inflated rice hull and irrigated at the point of -20 kPa and -33 kPa of soil water potential was reduced by 26% and 24% less than untreated control plot, respectively. Soil $EC_w$(1:5) has close relationship with $Cl^-$ as well as $NO_3{^-}-N$ and $SO{_4}^{2-}$ in the soil. Total nitrogen in leaf of lettuce was deficient in the earlier growth stage. The yield of lettuce increased by 6% by the application of inflated rice hull of $5.0Mg\;ha^{-1}$ with drip irrigation starting at -33 kPa of soil water potential. It decreased 4% when the drip irrigation was stated at -20 kPa of soil water potential. The amount of water used for irrigation was reduced with the increasing application of inflated rice hull. The watering initiated at the point of -33 kPa was more economical compared with starting at -20 kPa.