Point cloud is a set of points for representing a 3D object, and consists of geometric information, which is 3D coordinate information, and attribute information, which is information representing color, reflectance, and the like. In this way of expressing, it has a vast amount of data compared to 2D images. Therefore, a process of compressing the point cloud data in order to transmit the point cloud data or use it in various fields is required. Unlike color information corresponding to all 2D geometric information constituting a 2D image, a point cloud represents a point cloud including attribute information such as color in only a part of the 3D space. Therefore, separate processing of geometric information is also required. Based on these characteristics of point clouds, MPEG under ISO/IEC standardizes V-PCC, which imitates point cloud images and compresses them into 2D DCT-based 2D image compression codecs, as a compression method for high-density point cloud data. This has limitations in accurately representing 3D spatial information to proceed with compression by converting 3D point clouds to 2D, and difficulty in processing non-existent points when utilizing 3D DCT. Therefore, in this paper, we present 3D Discrete Cosine Transform-based Point Cloud Compression (3DCT PCC), a method to compress point cloud data, which is a 3D image by utilizing 3D DCT, and confirm the efficiency of 3D DCT compared to V-PCC based on 2D DCT.
LiDAR는 조사된 빛이 피사체에 반사되어 돌아오는 시간을 측정하여 거리를 측정하는 장비로서, 넓은 영역과 긴 거리에 걸쳐 실세계의 정밀한 3차원 정보를 포인트 클라우드 데이터로 제공해 준다. 이러한 대용량 포인트 클라우드 데이터는 자율주행 자동차, 로봇, 3차원 지도 제작 등 컴퓨터 비전 기술을 이용하는 다양한 분야에 널리 활용될 수 있다. 그러나 유리 구조물을 포함하는 피사체를 LiDAR로 촬영하는 경우, 유리면에서 빛의 반사로 인한 가상의 포인트가 생성되어 실제 3차원 정보를 왜곡하는 문제가 있다. 포인트 클라우드의 후속 처리를 효율적으로 수행하기 위하여, 이러한 왜곡을 제거하는 전처리 기술이 필요하다. 본 고에서는 LiDAR의 취득 원리와 3차원 포인트 클라우드의 특성을 고찰하고, 유리 반사로 인한 왜곡된 가상의 포인트를 자동으로 검출하고 제거하는 새로운 연구 주제를 소개한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.16-18
/
2021
미디어 기술은 사용자가 더욱 몰입감을 느낄 수 있는 방향으로 개발되어 왔다. 이러한 흐름에 따라 기존의 2D 이미지에 비해 깊이감을 느낄 수 있는 증강 현실, 가상 현실 등 3D 공간 데이터를 활용하는 미디어가 주목을 받고 있다. 포인트 클라우드는 수많은 3차원 좌표를 가진 여러 개의 점들로 구성된 데이터 형식이므로 각각의 점들에 대한 좌표 및 색상 정보를 사용하여 3D 미디어를 표현한다. 고정된 크기의 해상도를 갖는 2D 이미지와 다르게 포인트 클라우드는 포인트의 개수에 따라 용량이 유동적이며, 이를 기존의 비디오 코덱을 사용하여 압축하기 위해 국제 표준기구인 MPEG(Moving Picture Experts Group)에서는 Video-based Point Cloud Compression (V-PCC)을 제정하였다. V-PCC는 3D 포인트 클라우드 데이터를 직교 평면 벡터를 이용하여 2D 패치로 분해하고 이러한 패치를 2D 이미지에 배치한 다음 기존의 2D 비디오 코덱을 사용하여 압축한다. 본 논문에서는 앞서 설명한 2D 패치 이미지에 super resolution network를 적용함으로써 3D 포인트 클라우드의 성능 향상하는 방안을 제안한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.47-48
/
2021
본 논문에서는 대용량의 3D 데이터 시퀀스의 압축을 진행한다. 3D 데이터 시퀀스의 각 프레임에서 Pose Estimation을 통해 3D Skeleton을 추출한 뒤, 포인트 클라우드를 skeleton에 묶는 리깅 과정을 거치고, 다음 프레임과 같은 자세로 deformation을 진행한다. 다음 프레임과 같은 자세로 변형된 포인트 클라우드와 실제 다음 프레임의 포인트 클라우드를 비교하여, 두 데이터에 모두 있는 점, 실제 다음 프레임에만 있는 점, deformation한 데이터에만 있는 점으로 분류한다. 두 데이터에 모두 있는 점을 제외하고 나머지 두 분류의 점들을 저장함으로써 3D 시퀀스 데이터를 압축할 수 있다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2022.11a
/
pp.109-111
/
2022
일반적인 포인트 클라우드(Point Clouds)는 3 차원 공간상의 포인트가 한 개의 색상 정보만을 포함하고 있는 반면에 플렌옵틱 포인트 클라우드(Plenoptic Point Clouds)는 사실감을 향상시키기 위해 한 개의 포인트가 여러 시점에서 촬영된 색상 정보들을 모두 포함하고 있는 새로운 방식의 볼륨 메트릭 데이터 표현 방식이다. 하지만, 일반적인 포인트 클라우드에 비해 더 많은 색상 정보를 필요로 하기 때문에 효율적인 압축이 필수적이다. 따라서, 본 논문에서는 비디오 기반 포인트 클라우드 압축 표준 기술인 V-PCC 를 기반으로 플렌옵틱 포인트 클라우드의 색상 속성간 중복성 제거를 통해 효율적으로 색상 정보를 압축할 수 있는 방법을 제안한다. 실험 결과 제안 방법은 다중 플렌옵틱 색상 속성 정보를 독립적으로 부호화 경우에 비해 상당한 성능 향상이 있음을 보여준다.
Kim, Hoe-Min;Chun, Sungkuk;Kim, Un-Yong;Yun, Jeongrok
Annual Conference of KIPS
/
2022.11a
/
pp.277-278
/
2022
본 연구는 3차원 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘에 관한 것이다. 3차원 스캐너로부터 획득한 포인트클라우드 데이터는 다양한 제조 공정의 결과물인 산업 제품의 접합 상태를 파악하는데 자주 사용된다. 하지만 많은 노이즈를 포함하는 포인트클라우드 데이터로부터 제조 상태에 대한 수치적인 결과를 반복적으로 획득하기에는 많은 비용이 수반된다. 따라서 본 연구는 산업 제품의 접합부에 대한 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘을 소개하고자 한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.308-310
/
2020
본 논문에서는 포인트 클라우드 정합 시스템 자동화를 위한 재정합 프로세스에서 정합의 실패 유무를 판단하는 기존의 정합 평가 방법을 개선한 방법을 제안한다. 포인트 클라우드 정합 자동화를 위해 정합의 실패를 판단하여 다시 정합하는 재정합 프로세스는 자동화 시스템에서 필수적인 요소이다. 기존의 정합 평가 방법은 정합하고자하는 두 포인트 클라우드의 점의 간격이나 데이터의 양이 다를 경우 계산된 정합 오차가 정성적인 결과와는 다르게 측정되는 문제가 발생하는데, 이는 재정합 프로세스에서 치명적인 오류를 초래한다. 제안하는 방법은 참조 포인트 클라우드에서 가장 인접한 목표 포인트 클라우드의 세 점이 이루는 평면과의 수직 거리를 계산하고, 일정 거리 임계치를 만족하는 점들의 개수를 측정해 계산된 오차를 검증하여 정합 오판단율을 효과적으로 감소시켰다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.505-509
/
2020
포인트 클라우드 콘텐츠는 3 차원 공간에 수십만 개가 넘는 점들의 집합으로 이루어진 3D 데이터로 각 점들은 3 차원 공간의 좌표 데이터를 필요로 하고 추가적으로 색 (color), 반사율 (reflectance), 법선 벡터 (normal vector) 등과 같은 속성으로 구성되어 있다. 기존 2D 영상보다 한단계 높은 차원을 가진 3D 포인트 클라우드를 사용자에게 효율적으로 제공하기 위해서 고효율의 압축 기술 연구가 진행되고 있는데, 다양한 장치에서 발생하는 성능 차이에 구애 받지 않고 사용자에게 알맞은 서비스를 제공하기 위해서는 다양한 확장성에 대한 연구가 필요하다. 이에 본 논문에서는 포인트 클라우드 압축에 사용되는 Video-based Point Cloud Compression (V-PCC) 구조에 SHVC 코덱을 적용하여, 밀도 확장성을 갖는 포인트 클라우드 압축 비트스트림을 생성하는 방안을 제안하였다.
본 논문에서는 Velodyne 센서로 촬영한 포인트 클라우드를 시간에 따라 누적하고 객체로 구분함으로써 ground truth 데이터를 생성할 수 있는 시스템을 제안한다. 기존에 포인트 클라우드를 객체 단위로 구분하기 위해선 데이터의 매 프레임마다 구분 작업을 수행해야 한다. 본 논문에서 제안하는 시스템은 포인트 클라우드를 누적하여 가시화하고 객체 단위로 구분할 수 있는 도구를 제공함으로써 사용자의 작업량을 줄여주고 편의성을 향상시킨다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.279-282
/
2021
포인트 클라우드는 3 차원 물체를 표현하기 위한 점들의 집합으로, 동적인 3 차원 데이터를 정밀하게 획득할 수 있기에 이의 효율적인 압축의 필요성이 대두되고 있다. 기존 3D DCT(3D Discrete Cosine Transform)를 이용한 동적 객체의 포인트 클라우드 압축 방식은 Inter 프레임 압축을 고려하지 않아 압축시의 데이터 압축률에 한계가 있다. 따라서 본 논문은 이러한 문제점을 개선하기 위해 3D DCT 를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 압축하는 방식을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.