• Title/Summary/Keyword: 포인트클라우드 데이터

Search Result 151, Processing Time 0.023 seconds

Comparative Experiment of 2D and 3D DCT Point Cloud Compression (2D 및 3D DCT를 활용한 포인트 클라우드 압축 비교 실험)

  • Nam, Kwijung;Kim, Junsik;Han, Muhyen;Kim, Kyuheon;Hwang, Minkyu
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.553-565
    • /
    • 2021
  • Point cloud is a set of points for representing a 3D object, and consists of geometric information, which is 3D coordinate information, and attribute information, which is information representing color, reflectance, and the like. In this way of expressing, it has a vast amount of data compared to 2D images. Therefore, a process of compressing the point cloud data in order to transmit the point cloud data or use it in various fields is required. Unlike color information corresponding to all 2D geometric information constituting a 2D image, a point cloud represents a point cloud including attribute information such as color in only a part of the 3D space. Therefore, separate processing of geometric information is also required. Based on these characteristics of point clouds, MPEG under ISO/IEC standardizes V-PCC, which imitates point cloud images and compresses them into 2D DCT-based 2D image compression codecs, as a compression method for high-density point cloud data. This has limitations in accurately representing 3D spatial information to proceed with compression by converting 3D point clouds to 2D, and difficulty in processing non-existent points when utilizing 3D DCT. Therefore, in this paper, we present 3D Discrete Cosine Transform-based Point Cloud Compression (3DCT PCC), a method to compress point cloud data, which is a 3D image by utilizing 3D DCT, and confirm the efficiency of 3D DCT compared to V-PCC based on 2D DCT.

LiDAR 기반 포인트 클라우드 획득 및 전처리

  • Lee, Ok-Gyu;Sim, Jae-Yeong
    • Broadcasting and Media Magazine
    • /
    • v.26 no.2
    • /
    • pp.9-17
    • /
    • 2021
  • LiDAR는 조사된 빛이 피사체에 반사되어 돌아오는 시간을 측정하여 거리를 측정하는 장비로서, 넓은 영역과 긴 거리에 걸쳐 실세계의 정밀한 3차원 정보를 포인트 클라우드 데이터로 제공해 준다. 이러한 대용량 포인트 클라우드 데이터는 자율주행 자동차, 로봇, 3차원 지도 제작 등 컴퓨터 비전 기술을 이용하는 다양한 분야에 널리 활용될 수 있다. 그러나 유리 구조물을 포함하는 피사체를 LiDAR로 촬영하는 경우, 유리면에서 빛의 반사로 인한 가상의 포인트가 생성되어 실제 3차원 정보를 왜곡하는 문제가 있다. 포인트 클라우드의 후속 처리를 효율적으로 수행하기 위하여, 이러한 왜곡을 제거하는 전처리 기술이 필요하다. 본 고에서는 LiDAR의 취득 원리와 3차원 포인트 클라우드의 특성을 고찰하고, 유리 반사로 인한 왜곡된 가상의 포인트를 자동으로 검출하고 제거하는 새로운 연구 주제를 소개한다.

Improvement of point cloud data using 2D super resolution network (2D super resolution network를 이용한 Point Cloud 데이터 개선)

  • Park, Seong-Hwan;Kim, Kyu-Heon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.16-18
    • /
    • 2021
  • 미디어 기술은 사용자가 더욱 몰입감을 느낄 수 있는 방향으로 개발되어 왔다. 이러한 흐름에 따라 기존의 2D 이미지에 비해 깊이감을 느낄 수 있는 증강 현실, 가상 현실 등 3D 공간 데이터를 활용하는 미디어가 주목을 받고 있다. 포인트 클라우드는 수많은 3차원 좌표를 가진 여러 개의 점들로 구성된 데이터 형식이므로 각각의 점들에 대한 좌표 및 색상 정보를 사용하여 3D 미디어를 표현한다. 고정된 크기의 해상도를 갖는 2D 이미지와 다르게 포인트 클라우드는 포인트의 개수에 따라 용량이 유동적이며, 이를 기존의 비디오 코덱을 사용하여 압축하기 위해 국제 표준기구인 MPEG(Moving Picture Experts Group)에서는 Video-based Point Cloud Compression (V-PCC)을 제정하였다. V-PCC는 3D 포인트 클라우드 데이터를 직교 평면 벡터를 이용하여 2D 패치로 분해하고 이러한 패치를 2D 이미지에 배치한 다음 기존의 2D 비디오 코덱을 사용하여 압축한다. 본 논문에서는 앞서 설명한 2D 패치 이미지에 super resolution network를 적용함으로써 3D 포인트 클라우드의 성능 향상하는 방안을 제안한다.

  • PDF

Point Clouds Compression Using Pose Deformation (포즈 변형을 이용한 포인트 클라우드 압축)

  • Lee, Sol;Park, Byung-Seo;Park, Jung-Tak;Seo, Young-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.47-48
    • /
    • 2021
  • 본 논문에서는 대용량의 3D 데이터 시퀀스의 압축을 진행한다. 3D 데이터 시퀀스의 각 프레임에서 Pose Estimation을 통해 3D Skeleton을 추출한 뒤, 포인트 클라우드를 skeleton에 묶는 리깅 과정을 거치고, 다음 프레임과 같은 자세로 deformation을 진행한다. 다음 프레임과 같은 자세로 변형된 포인트 클라우드와 실제 다음 프레임의 포인트 클라우드를 비교하여, 두 데이터에 모두 있는 점, 실제 다음 프레임에만 있는 점, deformation한 데이터에만 있는 점으로 분류한다. 두 데이터에 모두 있는 점을 제외하고 나머지 두 분류의 점들을 저장함으로써 3D 시퀀스 데이터를 압축할 수 있다.

  • PDF

V-PCC based Color Attributes Compression for Plenoptic Point Clouds (V-PCC 기반 플렌옵틱 포인트 클라우드의 색상 속성 정보 부호화 방법)

  • Hahyun Lee;Jungwon Kang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.109-111
    • /
    • 2022
  • 일반적인 포인트 클라우드(Point Clouds)는 3 차원 공간상의 포인트가 한 개의 색상 정보만을 포함하고 있는 반면에 플렌옵틱 포인트 클라우드(Plenoptic Point Clouds)는 사실감을 향상시키기 위해 한 개의 포인트가 여러 시점에서 촬영된 색상 정보들을 모두 포함하고 있는 새로운 방식의 볼륨 메트릭 데이터 표현 방식이다. 하지만, 일반적인 포인트 클라우드에 비해 더 많은 색상 정보를 필요로 하기 때문에 효율적인 압축이 필수적이다. 따라서, 본 논문에서는 비디오 기반 포인트 클라우드 압축 표준 기술인 V-PCC 를 기반으로 플렌옵틱 포인트 클라우드의 색상 속성간 중복성 제거를 통해 효율적으로 색상 정보를 압축할 수 있는 방법을 제안한다. 실험 결과 제안 방법은 다중 플렌옵틱 색상 속성 정보를 독립적으로 부호화 경우에 비해 상당한 성능 향상이 있음을 보여준다.

  • PDF

A Study on Cross-section Extraction Method based on 3D Point Cloud Data (3차원 포인트클라우드 기반 단면 정보 추출 기술 개발)

  • Kim, Hoe-Min;Chun, Sungkuk;Kim, Un-Yong;Yun, Jeongrok
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.277-278
    • /
    • 2022
  • 본 연구는 3차원 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘에 관한 것이다. 3차원 스캐너로부터 획득한 포인트클라우드 데이터는 다양한 제조 공정의 결과물인 산업 제품의 접합 상태를 파악하는데 자주 사용된다. 하지만 많은 노이즈를 포함하는 포인트클라우드 데이터로부터 제조 상태에 대한 수치적인 결과를 반복적으로 획득하기에는 많은 비용이 수반된다. 따라서 본 연구는 산업 제품의 접합부에 대한 포인트클라우드로부터 단면 정보를 자동으로 추출할 수 있는 알고리즘을 소개하고자 한다.

An Improved Registration Evaluation Method for Automating Point Cloud Registration System (포인트 클라우드 정합 시스템 자동화를 위한 개선된 정합 평가 방법)

  • Kim, Jongwook;Kim, Hyungmin;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.308-310
    • /
    • 2020
  • 본 논문에서는 포인트 클라우드 정합 시스템 자동화를 위한 재정합 프로세스에서 정합의 실패 유무를 판단하는 기존의 정합 평가 방법을 개선한 방법을 제안한다. 포인트 클라우드 정합 자동화를 위해 정합의 실패를 판단하여 다시 정합하는 재정합 프로세스는 자동화 시스템에서 필수적인 요소이다. 기존의 정합 평가 방법은 정합하고자하는 두 포인트 클라우드의 점의 간격이나 데이터의 양이 다를 경우 계산된 정합 오차가 정성적인 결과와는 다르게 측정되는 문제가 발생하는데, 이는 재정합 프로세스에서 치명적인 오류를 초래한다. 제안하는 방법은 참조 포인트 클라우드에서 가장 인접한 목표 포인트 클라우드의 세 점이 이루는 평면과의 수직 거리를 계산하고, 일정 거리 임계치를 만족하는 점들의 개수를 측정해 계산된 오차를 검증하여 정합 오판단율을 효과적으로 감소시켰다.

  • PDF

A method of density scalability using SHVC codec in Video based Point Cloud Compression (SHVC 기반 V-PCC 3 차원 포인트 밀도 확장성 지원 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.505-509
    • /
    • 2020
  • 포인트 클라우드 콘텐츠는 3 차원 공간에 수십만 개가 넘는 점들의 집합으로 이루어진 3D 데이터로 각 점들은 3 차원 공간의 좌표 데이터를 필요로 하고 추가적으로 색 (color), 반사율 (reflectance), 법선 벡터 (normal vector) 등과 같은 속성으로 구성되어 있다. 기존 2D 영상보다 한단계 높은 차원을 가진 3D 포인트 클라우드를 사용자에게 효율적으로 제공하기 위해서 고효율의 압축 기술 연구가 진행되고 있는데, 다양한 장치에서 발생하는 성능 차이에 구애 받지 않고 사용자에게 알맞은 서비스를 제공하기 위해서는 다양한 확장성에 대한 연구가 필요하다. 이에 본 논문에서는 포인트 클라우드 압축에 사용되는 Video-based Point Cloud Compression (V-PCC) 구조에 SHVC 코덱을 적용하여, 밀도 확장성을 갖는 포인트 클라우드 압축 비트스트림을 생성하는 방안을 제안하였다.

  • PDF

Object Segmentation System for Accumulated Point Clouds (누적된 포인트 클라우드의 객체별 분할 시스템)

  • Kook, Yoonchang;Cho, Seoungjae;Zhang, Weiqiang;Cho, Kyungeun
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.950-951
    • /
    • 2017
  • 본 논문에서는 Velodyne 센서로 촬영한 포인트 클라우드를 시간에 따라 누적하고 객체로 구분함으로써 ground truth 데이터를 생성할 수 있는 시스템을 제안한다. 기존에 포인트 클라우드를 객체 단위로 구분하기 위해선 데이터의 매 프레임마다 구분 작업을 수행해야 한다. 본 논문에서 제안하는 시스템은 포인트 클라우드를 누적하여 가시화하고 객체 단위로 구분할 수 있는 도구를 제공함으로써 사용자의 작업량을 줄여주고 편의성을 향상시킨다.

3D Motion Estimation and Compensation method for Point cloud video codec by 3D DCT (3D DCT 를 이용한 포인트 클라우드의 움직임 예측/보상 기법)

  • Lee, Minseok;Kim, Boyeun;Yoon, Sangeun;Hwang, Yonghae;Kim, Junsik;Kim, Khuheon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.279-282
    • /
    • 2021
  • 포인트 클라우드는 3 차원 물체를 표현하기 위한 점들의 집합으로, 동적인 3 차원 데이터를 정밀하게 획득할 수 있기에 이의 효율적인 압축의 필요성이 대두되고 있다. 기존 3D DCT(3D Discrete Cosine Transform)를 이용한 동적 객체의 포인트 클라우드 압축 방식은 Inter 프레임 압축을 고려하지 않아 압축시의 데이터 압축률에 한계가 있다. 따라서 본 논문은 이러한 문제점을 개선하기 위해 3D DCT 를 이용한 움직임 예측을 통하여 포인트 클라우드 영상의 I 프레임 및 P 프레임을 압축하는 방식을 제안한다.

  • PDF