지반조사방법 중 표준관입시험 결과인 N치를 통해 알 수 있는 지반 지지층의 깊이는 각종 지반 구조물의 설계를 위한 기본적인 지반 정보를 제공하는 중요한 지표이다. 이러한 지반조사 결과는 시간과 비용 측면을 고려해 간헐적으로 수행될 수밖에 없으며, 그 결과는 현장 지반의 대표성을 갖게 된다. 그러나 지반 내에는 다양한 지층 변동성 및 불확실성이 존재하므로 간헐적인 현장조사를 통해 지반의 특성을 모두 파악하는 것은 어렵다. 따라서 시추공 정보로부터 미계측 지점을 예측하기 위한 방법들이 제시되어 왔으며, 대표적인 방법으로는 공간보간기법인 크리깅(Krigging), 역거리가중법(IDW)등이 있다. 최근에는 보간기법의 정확성을 높이기 위해 지반분야와 딥러닝 기술을 접목한 연구들이 수행되고 있다. 본 연구에서는 약 2만 2천공의 지반조사 결과를 바탕으로 딥러닝과 공간보간기법으로 지반 지지층 깊이 예측을 위한 비교 연구를 수행하였다. 이를 위해 딥러닝 알고리즘인 완전연결 네트워크와 포인트넷 방법, 공간보간기법으로는 IDW를 사용하였다. 각 분석 모델의 지지층 예측 결과 중 오차의 평균은 IDW가 3.01m 였으며, 완전연결 네트워크 및 포인트넷이 각 3.22m와 2.46m 였다. 결과의 표준편차는 IDW가 3.99였으며, 완전연결네트워크와 포인트넷이 3.95와 3.54로 나타났다. 연구 결과 3차원 정보에 특화된 포인트넷 구조를 적용한 네트워크가 IDW 및 완전연결 네트워크에 비해 개선된 결과를 나타냈다.
동기화 전략을 명시하는 방법으로 시간 구간 명시, 시간축 명시, 레퍼런스 포인트를 두는 방법, 페트리넷을 이용하는 방법 등 매우 다양한 연구 결과가 소개되었다. 본 논문은 기존의 멀티미디어 시나리오의 동기화 명시를 위한 페트리넷 방법[1-3]을 확장하여, 페트리넷 동기화 명시를 실현한 멀티미디어 시나리오를 재생하여 주는 시스템을 구현하고, 자료구조, 멀티프로세싱, 동기화 기법 등을 중심으로 본 재생 시스템을 소개한다. 본 시스템의 특징은 미디어 단위의 시나리오 진행이 가능한 것이다. 멀티미디어 프로그램이 학습에 많이 이용되므로 물리의 '중력'을 간단하게 설명하는 예제와 더불어 어떻게 실행되는가를 설명한다.
공격 양상이 더욱 지능화되고 다양해진 봇넷은 오늘날 가장 심각한 사이버 보안 위협 중 하나로 인식된다. 본 논문은 UGR과 CTU-13 데이터 셋을 대상으로 반지도 학습 딥러닝 모델인 오토엔코더를 활용한 봇넷 검출 실험결과를 재검토한다. 오토엔코더의 입력벡터를 준비하기 위해, 발신지 IP 주소를 기준으로 넷플로우 레코드를 슬라이딩 윈도우 기반으로 그룹화하고 이들을 중첩하여 트래픽 속성을 추출한 데이터 포인트를 생성하였다. 특히, 본 논문에서는 동일한 흐름-차수(flow-degree)를 가진 데이터 포인트 수가 이들 데이터 포인트에 중첩된 넷플로우 레코드 수에 비례하는 멱법칙(power-law) 특징을 발견하고 실제 데이터 셋을 대상으로 97% 이상의 상관계수를 제공하는 것으로 조사되었다. 또한 이러한 멱법칙 성질은 오토엔코더의 학습에 중요한 영향을 미치고 결과적으로 봇넷 검출 성능에 영향을 주게 된다. 한편 수신자조작특성(ROC)의 곡선아래면적(AUC) 값을 사용해 오토엔코더의 성능을 검증하였다.
블루투스는 무선으로 근거리 디바이스들을 연결하는 통신 기술로, 하나의 마스터와 하나 이상의 슬레이브 기기가 피코넷을 구성하고, 피코넷들이 연결되어 스캐터넷을 이루게 된다. 스캐터넷에서 여러 피코넷에 속하면서, 피코넷간 연결을 해주는 디바이스를 브릿지 또는 게이트웨이 노드라고 하는데 스캐터넷이 효율적으로 동작하도록 하기 위해서는 피코넷 내부의 마스터와 슬레이브 간의 효과적인 피코넷 스케줄링과 함께 브릿지 노드를 효과적으로 스케줄링 해주는 스캐터넷 스케줄링이 필요하다. 본 논문에서는 랑데부 포인트와 랑데부 윈도우를 이용한 스캐터넷 스케줄링 알고리즘과 함께 스니프 모드를 이용한 피코넷 스케줄링 알고리즘을 제안하고, 시뮬레이션을 통해 기존 방식과의 성능을 비교, 분석하였다. 그 결과 트래픽의 상태에 따라 링크에 할당되는 대역폭을 가변함으로써 무선자원을 효과적으로 분배할 수 있음을 보였다. 또한 제안된 알고리즘은 전력 소비 절약 모드인 스니프 모드의 사용으로 전력 소비를 절약할 수 있다는 장점을 갖는다.
Research on object detection algorithms using 2D data has already progressed to the level of commercialization and is being applied to various manufacturing industries. Object detection technology using 2D data has an effective advantage, there are technical limitations to accurate data generation and analysis. Since 2D data is two-axis data without a sense of depth, ambiguity arises when approached from a practical point of view. Advanced countries such as the United States are leading 3D data collection and research using 3D laser scanners. Existing processing and detection algorithms such as ICP and RANSAC show high accuracy, but are used as a processing speed problem in the processing of large-scale point cloud data. In this study, PointNet a representative technique for detecting objects using widely used 3D point cloud data is analyzed and described. And RandLA-Net, which overcomes the limitations of PointNet's performance and object prediction accuracy, is described a review of detection technology using point cloud data was conducted.
인문학은 컴퓨터를 이용하는 매체로서는 매우 어려운 분야이다. 그러나 최근에는 많은 분야에서 융복합이 확산되고 있다. 본 논문은 인문학의 대중화를 위하여 IT를 이용한 기술적인 방법을 제시하고자 한다. 이를 위하여 인문학에 디지털 스토리텔링을 적용하기 위한 경로를 페트리넷으로 구현하였다. 이는, 문장이나 작품에서 나타나는 예시를 관련된 질문과 연계하기 위하여 각 구성은 디지털스토리텔링으로 구현하였다, 이러한 스토리텔링은 작가, 시놉시스, 배경, 구성, 감상 포인트, 독자의 리뷰로 구성되었다. 또한 본 연구는 이러한 문학적 데이터 경로 분석을 위하여 페트리넷을 이용하였다.
무선 네트웍 환경에서 블루투스는 휴대폰, PDA, 휴대용PC 등과 같은 휴대장치들, 네트워크 액세스 포인트, 기타 주변장치들 간에 좁은 영역내의 무선 연결을 위한 기술사양으로서 크기가 작고, 저렴한 가격, 적은 전력소모로 이용가능한 근거리 무선통신이다. 블루투스는 1개의 마스터와 최대 7개의 슬레이브를 갖는 피코넷으로 구성되며, 다수의 피코넷이 모여 하나의 스캐터넷으로 구성하게 된다. 본 논문에서는 노드수에 따른 효과적인 스캐터넷의 형성과 메카니즘 구성을 위해 라인형 및 링형 스캐터넷을 구성하고, 이에 대한 성능평가를 NS기반의 Bluehoc 시뮬레이터를 통하여 구현하고, 라인형 및 링형 스캐터넷의 특성을 비교 분석하여 최적의 무선네트웍 환경을 구성하고자 한다.
정밀도로지도는 자율주행차의 기본 인프라로 활용되어 최신 도로정보가 신속하게 반영되어야 한다. 하지만 현재 정밀도로지도 공정 중 객체 도화 및 구조화 편집과정이 수작업으로 이루어지며 주요 구축 대상인 도로 노면선 표시의 레이어를 생성하는데 가장 오랜 시간이 소요된다. 이에 본 연구에서는 선행 연구에서 기학습된 포인트넷(PointNet) 모델을 통해 색상 유형(백색, 청색, 황색)이 예측된 도로 노면선 표시의 포인트 클라우드를 입력 데이터로 활용하였고, 이를 기반으로 본 연구에서는 도로 노면선 표시 레이어의 도화 및 구조화 편집을 자동화하는 방법론을 제안하였다. 제안한 방법론을 통해 구축한 3차원 벡터 데이터의 활용성을 검증하기 위해 정밀도로지도 품질검사 기준에 따라 정확도를 분석하였다. 벡터 데이터의 위치정확도 검사에서 수평 오차와 수직 오차에 대한 평균제곱근오차(RMSE: Root Mean Square Error)는 0.1m 이내로 나타나 적합성을 검증하였으며, 구조화 편집 정확도 검사에서 선표시 유형과 선규제 유형의 구조화 정확도가 모두 88.235%로 나타나 활용성을 검증하였다. 따라서, 본 연구에서 제안한 방법론으로 정밀도로지도를 위한 도로 노면선 표시의 벡터 데이터를 효율적으로 구축할 수 있는 것을 알 수 있었다.
Recently, quality control of the Liquefied Natural Gas Carrier (LNGC) cargo hold and block-erection interference areas using 3D scanners have been performed, focusing on large shipyards and the international association of classification societies. In this study, as a part of the research on LNGC cargo hold quality management advancement, a study on deep-learning-based scaffolding system 3D point cloud object detection and post-processing were conducted using a LNGC cargo hold 3D point cloud. The scaffolding system point cloud object detection is based on the PointNet deep learning architecture that detects objects using point clouds, achieving 70% prediction accuracy. In addition, the possibility of improving the accuracy of object detection through parameter adjustment is confirmed, and the standard of Intersection over Union (IoU), an index for determining whether the object is the same, is achieved. To avoid the manual post-processing work, the object detection architecture allows automatic task performance and can achieve stable prediction accuracy through supplementation and improvement of learning data. In the future, an improved study will be conducted on not only the flat surface of the LNGC cargo hold but also complex systems such as curved surfaces, and the results are expected to be applicable in process progress automation rate monitoring and ship quality control.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.