• Title/Summary/Keyword: 포물선 방정식

Search Result 82, Processing Time 0.026 seconds

Comparison of Parabolic Mild-Slope Equations in View of Wave Diffraction (회절현상의 관점에서 본 포물선형 완경사방정식의 비교)

  • 이해균;이길성;이창훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.10 no.1
    • /
    • pp.1-9
    • /
    • 1998
  • Among the phenomena of water-wave transformation, the wave diffraction is prominent for waves insidc the harbor. It is important to study how accurately the diffraction can be resolved by the numerical model. Three parabolic mild-slope equations, i.e., simple, wide-ang1e, three-parameter parabolic equations, are compared in view of the diffraction of water-waves around a semi-infinite breakwater. To avoid reflections at lateral boundaries, we apply the perfect boundary condition of Dalrymple and Martin (1992) in case of simple parabolic equation. The numerical results for the case of a semi-infinite breakwater are compared with the analytical solution of Penney and Price (1952). All the results are very accurate when waves attack the breakwater normally. When waves attack the breakwater obliquely, however, the simple parabolic equation yields the worst solution and the three-parameter parabolic equation yields the most accurate solution.

  • PDF

Analytic Error Caused by the Inconsistency of the Approximation Order between the Non Local Boundary Condition and the Parabolic Governing Equation (포물선 지배 방정식과 비국소적 경계조건의 근사 차수 불일치에 의한 해석적 오차)

  • Lee Keun-Hwa;Seong Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.229-238
    • /
    • 2006
  • This paper shows the analytic error caused by the inconsistency of the approximation order between the non local boundary condition (NLBC) and the parabolic governing equation. To obtain the analytic error, we first transform the NLBC to the half space domain using plane wave analysis. Then, the analytic error is derived on the boundary between the true numerical domain and the half space domain equivalent to the NLBC. The derived analytic error is physically expressed as the artificial reflection. We examine the characteristic of the analytic error for the grazing angle, the approximation order of the PE or the NLBC. Our main contribution is to present the analytic method of error estimation and the application limit for the high order parabolic equation and the NLBC.

Suggestion for a splitting technique of the square-root operator of three dimensional acoustic parabolic equation based on two variable rational approximant with a factored denominator (인수분해 된 분모를 갖는 두 변수 유리함수 근사에 기반한 3차원 음향 포물선 방정식 제곱근 연산자의 분할기법 제안)

  • Lee, Keunhwa
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In this study, novel approximate form of the square-root operator of three dimensional acoustic Parabolic Equation (3D PE) is proposed using a rational approximant for two variables. This form has two advantages in comparison with existing approximation studies of the square-root operator. One is the wide-angle capability. The proposed form has wider angle accuracy to the inclination angle of ${\pm}62^{\circ}$ from the range axis of 3D PE at the bearing angle of $45^{\circ}$, which is approximately three times the angle limit of the existing 3D PE algorithm. Another is that the denominator of our approximate form can be expressed into the product of one-dimensional operators for depth and cross-range. Such a splitting form is very preferable in the numerical analysis in that the 3D PE can be easily transformed into the tridiagonal matrix equation. To confirm the capability of the proposed approximate form, comparative study of other approximation methods is conducted based on the phase error analysis, and the proposed method shows best performance.

Higher Order Parabolic Equation Modeling Using Galerkin's Method (Galerkin방법을 이용한 고차 포물선 방정식 수중음 전달 해석)

  • 이철원;성우제;정문섭
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 1999
  • Exact forward modeling of acoustic propagation is crucial in MFP such as inverse problems and various other acoustic applications. As acoustic propagation in shallow water environments become important, range dependent modeling has to be considered of which PE method is considered as one of the most accurate and relatively fast. In this paper higher order numerical rode employing the PE method is developed. To approximate the depth directional operator, Galerkin's method is used with partial collocation to lessen necessary calculations. Linearization of tile depth directional operator is achieved via expansion into a multiplication form of (equation omitted) approximation. To approximate the range directional equation, Crank-Nicolson's method is used. Final1y, numerical self stater is employed. Numerical tests are performed for various occan environment scenarios. The results of these tests are compared to exact solutions, OASES and RAM results.

  • PDF

Free Vibration Analysis of Fixed Ended Parabolic Arches (양단고정(兩端固定) 포물선(抛物線)아치의 자유진동(自由振動) 해석(解析))

  • Joon, Sun Man;Park, Kwang Kyu;Lee, Byoung Koo;Hwang, Hack Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.31-38
    • /
    • 1985
  • The governing differential equations and the boundary conditions for the free vibration of fixed-ended uniform parabolic arch are derived on the basis of the equilibrium equations and the D'Alembert principle. The effect of rotary inertia as well as extensional and flexural deformations is considered in the governing differential equations. A trial elgenvalue method is used for determining the natural frequencies. The Runge-Kutta method is used in this method to perform the integration of the differential equations. The detailed studies are made of the lowest three vibration frequencies for the span length equal to 10m. The effect of the rotary inertia is analyzed and it's numerical data are presented in table. And as the numerical results the frequency versus the rise of arch and the radius of gyration are presented in figures.

  • PDF

Acoustic parabolic equation model with a directional source (방향성 있는 음원이 적용된 음향 포물선 방정식 모델)

  • Lee, Keunhwa;Na, Youngnam;Son, Su-Uk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The acoustic parabolic equation method in the ocean is an efficient technique to calculate the acoustic field in the range-dependent environment, emanating from a point source. However, we often need to use the directional source with a main beam in the practical problem. In this paper, we present two methods to implement the directional source in the acoustic parabolic equation code easily. One is simply to filter the Delta function idealized as an omni-directional point source. Another method is based on the rational filtering of the self-starter solution. It has a limitation not to separate the up-going and the down-going wave for the depth, but would be useful in implementing the mode propagation. Numerical examples for validation are given in the Pekeris environment and the deep sea environment.

거리의존 해양환경에서의 수중음파전달 모델에 대한 benchmark 시험

  • 성우체
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1996.06a
    • /
    • pp.64-68
    • /
    • 1996
  • 수중음파전달 모델은 benchmark 시험을 통해 정확도, 적용범위, 계산시간 등의 성능을 평가받는다. 본 논문에서는 analytic 모델, 정상 모드 모델(normal mode model), 포물선 방정식 모델(parabolic equation model), 가우시안 빔 모델(Gaussian beam model), 스펙트럼 모델(spectral model) 등 거리의존 모델에 대해 benchmark 시험을 수행하였으며, benchmark 시험은 다음과 같은 세 가지 거리의존 해양환경으로 나누어 실시했다 : 1) 해수면과 해저면이 Dirichlet 경계조건인 이상 쐐기 문제(ideal wedge problem), 2) 해수면은 앞서 말한 Dirichlet 경계조건이나 해저면은 전달 손실이 있는 손실 통과 해저면 쐐기 문제(penetrable lossy bottom wedge problem), 3) 해수면은 앞서 말한 Dirichlet 경계조건이고 해저면은 Neumann 경계조건으로 서로 평행이면 음파전달 속도가 거리방향 의존인 경우, 경우 1은 anaytic 모델을 사용하고 경우 2는 정상 모드 모델, 포물선 방정식 모델, 스펙트럼 모델을 사용하였으며, 경우 3에 대해서는 가우시안 빔 모델과 포물선 방정식 모델을 사용하였다.

  • PDF

Numerical Analysis of Free Vibration of Parabolic Arches with Hinged Ends (양단(兩端)힌지 포물선(抛物線)아치의 자유진동(自由振動)에 관한 연구(研究))

  • Hwang, Hak Joo;Lee, Byoung Koo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.69-77
    • /
    • 1984
  • In this paper, the governing differential equations for the free vibration of uniform parabolic arches are derived on the basis of equilibrium equations of a small element of arch rib and the D'Alembert principle. A trial eigen value method is used for determining the natural frequencies and mode shapes. And the Runge-Kutta fourth order integration technique is also used in this method to perform the integration of the differential equations. A detailed study is made of the first mode for the symmetrical and anti-symmetrical vibrations of hinged arches with the Span length equal to 10 m. The effects of the rise of arch, the radius of gyration and the rotary inertia on free vibrations are presented in detail in curves and table.

  • PDF

Numerical Analysis of Diffraction Using Parabolic Mild-Slope Equation (포물선형 완경사 방정식에 의한 회절현상의 수치해석)

  • Kim, Sang-Ug;Son, Min-Woo;Baek, Kyoung-Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1914-1918
    • /
    • 2006
  • Recently, the importance of ocean becomes more serious. Thus, we need to construct port structures and instruments safely. Especially, we should understand the diffraction phenomenon of wave in order to construct breakwaters. To simulate diffraction of wave, parabolic mild slope equations are solved using FDM. A breakwater with an open part and an half infinite breakwater are selected for simulation. Diffraction of wave are simulated in the condition of wave angles of attack of $0^{\circ},\;30^{\circ}\;and\l;60^{\circ}$. Diffraction Coefficient and 1)Ampplitude are shown in graphics and compared with results of Penny & Price and Memos.

  • PDF

Analysis of Acoustic Propagation using Spectral Parabolic Equation Method (스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석)

  • Kim, Kook-Hyun;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1996
  • This thesis deals with a method to solve a two-and-one-half-dimensional ($2\frac12$ D) problem, which means that the ocean environment is two-dimensional whereas the source is fully three-dimensionally propagating, including three-dimensional refraction phenomena and three-dimensional back-scattering, using two-dimensional two-way parabolic equation method combined with Fourier synthesis. Two dimensional two-way parabolic equation method uses Galerkin's method for depth and Crank-Nicolson method and alternating direction for range and provides a solution available to range-dependent problem with wave-field back-scattered from discontinuous interface. Since wavenumber, k, is the function of depth and vertical or horizontal range, we can reduce a dimension of three-dimensional Helmholtz equation by Fourier transforming in the range direction. Thus transformed two-dimensional Helmholtz equation is solved through two-way parabolic equation method. Finally, we can have the $2\frac12$ D solution by inverse Fourier transformation of the spectral solution gained from in the last step. Numerical simulation has been carried out for a canonical ocean environment with stair-step bottom in order to test its accuracy using the present analysis. With this spectral parabolic equation method, we have examined three-dimensional acoustic propagation properties in a specified site in the Korean Straits.

  • PDF