• Title/Summary/Keyword: 폐아스콘

Search Result 15, Processing Time 0.024 seconds

Strength Development of Dry-Mixed Earthen Concrete Incorporating Red Mud and Recycled Asphalt Concrete Aggregates (폐아스콘 순환골재를 활용한 레드머드 혼입 건식 흙콘크리트의 강도 발현 특성)

  • Kang, Suk-Pyo;Park, Kyu-Eun;Kim, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.403-411
    • /
    • 2024
  • This study investigated the use of recycled aggregate from waste asphalt concrete in dry soil concrete mixed with red mud. The results showed that dry soil concrete utilizing waste asphalt recycled aggregate had relatively lower compressive strength compared to that using crushed aggregate. However, dry soil concrete mixed with red mud using waste asphalt recycled aggregate achieved a compressive strength of over 18.0MPa, meeting the highest performance standard for parking lot use, when the cement content was more than 250kg/m3.

Properties of Cold Recycled Asphalt Mixtures with Alkali-activated Filler according to Wasted Asphalt Aggregate Content (폐아스콘 순환골재 혼입율에 따른 알칼리활성화 채움재 상온 재생 아스팔트 혼합물의 특성)

  • Lee, Min-Hi;Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.3
    • /
    • pp.199-206
    • /
    • 2018
  • Due to the advantages of less raw materials and fossil fuel consumption, lower carbon footprint, and the capability of pavement performance improvement, the recycling technology of asphalt is developed and applied for road rehabilitation and construction in the western countries over the past two decades. Cold recycled asphalt mixtures are bituminous materials normally made by mixing recycled aggregate from wasted asphalt with an asphalt emulsion and water at room temperature. This paper aims at investigating the properties of cold recycled asphalt mixture with alkali-activated filler according to wasted asphalt aggregate content. As a result, as the content of wasted asphalt aggregate increased, the marshall stability of cold recycled asphalt mixture decreased and void ratio increased. Also, grading curves for cold recycled asphalt mixture as specified in GR criteria were satisfied in all aggregate mixing conditions regardless of the wasted asphalt aggregate content.

A Study the Recycling method and Safety of Ascon (아스콘 안전도와 효율적인 재활용 방안에 관한 연구)

  • 허성관;권택진
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.4
    • /
    • pp.67-72
    • /
    • 2000
  • A special double drier structure at a plant level is developed to recycle old ascon as well as an economic mixture rate of old with new is analyzed under safety consideration in this thesis. Based upon the experimentations performed throughout this research, 35% of old ascon mixture is found to be the best for flow test, stability, air void, density, and moisture susceptibility. It is also found that mixture does not meet the requirement in indirect tensile test, However, it is concluded that it is not critical at all since the experimental results present that the difference is too small to give any meaningful indication. A good return for the investment of this facility can be obtained if the mixture rate guideline suggested in this research is kept.

  • PDF

The Recycling of Waste Asphalt Concrete Mixfure Using a Movable Asphalt Recycling Machine (이동형 아스팔트 재생기를 이용한 페아스팔트 콘크리트 혼합물의 재활용)

  • 박승범;조청휘;김정환
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.2
    • /
    • pp.75-83
    • /
    • 2000
  • Recently, the quantities of waste asphalt concrete at construction sites have much increased greatly. but maintaining a filling-up and final disposal place is a difficult problem. Therefore, we are faced with a worsening environmental problem brought about present illegal measures. So, safety treatment and recycling of construction waste is a very important question in the Preservation of environmental and natural resources In this study we performed fundamental investigation to manufacture the base recycling asphalt mixture by movable asphalt recycling machine. It contained waste asphalt concrete and recycling agent and its quality was equal to virgin asphalt concrete.

  • PDF

A Study the Recucling Method and Safety of Ascon (아스콘 안전도와 효율적인 재활용 방안에 관한 연구)

  • 허성관;권택진
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.11a
    • /
    • pp.471-482
    • /
    • 2000
  • A special double drier structure at a plant level is developed to recycle old ascon as well as an economic mixture rate of old with new is analyzed under safety consideration in this thesis. Based upon the experimentations performed throughout this research, 35% of old ascon mixture is found to be the best for flow test, stability, air void, density, and moisture susceptibility. It is also found that the mixture does not meet the requirement in indirect tensile test, However, it is concluded that it is not critical at all since the experimental results present that the difference is too small to give any meaningful indication. A good return for the investment of this facility can be obtained if the mixture rate guideline suggested in this research is kept.

  • PDF

A Study on Chemical Analysis of Reclaimed Asphalts and Rejuvenators for Property Restoration (성상복원을 위한 폐아스팔트의 화학적 분석 및 재생첨가제 연구)

  • Jung, Du-Hwoe
    • International Journal of Highway Engineering
    • /
    • v.3 no.1 s.7
    • /
    • pp.177-184
    • /
    • 2001
  • A recycling agent has been manufactured on the basis of the chemical composition of reclaimed asphalt binders and virgin asphalt binders. The chemical compositions of reclaimed asphalt binders extracted from reclaimed asphalt pavements have been analyzed according to the ASTM method and the results were compared to those of virgin asphalt binder AP-3. Reclaimed asphalt binders have shown that asphaltenes was increased whereas saturates, naphthene aromatics, and polar aromatics fractions were decreased. A recycling agent made of aromatic compounds, in which its chemical composition is similar to the aromatics fraction in asphalt binders, has been produced to reduce the amount of asphaltenes in reclaimed asphalt hinders. The evaluation of the recycling agent produced was performed by testing ductility, rolling and ball softening point, penetration at $25^{\circ}C$ and viscosity at $60^{\circ}C$. It was found that, by adding the recycling agent 20% by weight to the reclaimed asphalt binders, the physical properties of reclaimed asphalt binders was recovered to the level of virgin asphalt binder AP-3.

  • PDF