• Title/Summary/Keyword: 폐석

Search Result 235, Processing Time 0.024 seconds

Characterization of Leaching of Heavy Metal and Formation of Acid Mine Drainage from Coal Mine Tailings (석탄폐석(石炭廢石)으로부터 산성광산배수(酸性鑛山排水)의 생성과 중금속(重金屬)의 용출(溶出) 특성(特性))

  • Lee, Gye-Seung;Song, Young-Jun
    • Resources Recycling
    • /
    • v.19 no.2
    • /
    • pp.54-62
    • /
    • 2010
  • In order to obtain the basic data for recycling of coal mine tailings, the characteristics of coal mine tailings, the formation of AMD from the tailings and the leaching of heavy metal from the tailings were studied. The samples were characterized in terms of chemical composition, mineral composition and content of heavy metal of the tailings were investigated. The effects of time, temperature, content of pyrite, sulfide minerals on the formation of AMD were also investigated. For the leaching tests, the KS method, TCLP method and column test were used. From the investigated data, we can see that the coal mine tailings can be used as aggregate for filling used gallery. We can also see that the formation of AMD from coal mine tailings can be prevented by mixing 4% or more limestone with it.

Development of Standard for Evaluating Performance of Cementitious Scagliola using Statistical Research on Generation Amount of Waste Stone and Waste Stone Powder (우리나라 폐석재, 폐석분 발생량 통계 조사 및 이를 활용한 시멘트계 인조대리석 내·외장재 개발에 따른 성능검증 시험 표준안 개발)

  • Park, Wan-Goo;Kim, Su-Ryon;Heo, Neung-Hoe;An, Ki-Won;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • Waste Stone and Waste Stone Powder are recycling some cyclic aggregate only. And the greater part of Waste Stone and Waste Stone Powder are reclaining or neglecting. To solve this problem, the government is proceeding development of cementitious scagliola using waste stone and waste stone powder. However, quality standard for cementitious scagliola using waste stone and waste stone powder has not been established. So cementitious scagliola using waste stone and waste stone powder has problem of quality assurance. Therefore in this study, developed standard for Evaluating Performance of cementitious scagliola using waste stone and waste stone powder through survey of international standard.

  • PDF

Fundamental Study on Adsorption Capacity and Utilization of Coal Waste as Adsorbents (석탄폐석의 흡착능 및 흡착제로의 활용방안에 관한 기초 연구)

  • 한동준;임재명;이찬기;이해승
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.61-72
    • /
    • 1997
  • This research aims to remove the heavy metals, nonbiodegradable COD(NBDCOD), and color using the coal waste. The experimental by heat treatment was performed to advance the adsorption capacity. The results are as follows ; i) The coal waste had the adsorption capacity of heavy metals and the rates were in the range of 20 to 30 percents. ii) The heat treatment was the optimum condition that the reaction time was 6 hours at $500^{\circ}C$, , iii) In the column experimen, non-treated coal waste removed the COD and color in the range of 20 to 60 percents. iv) Heat-treated coal waste showed higher removal rate of the color in biological effluent, and heavy metal and COD removal rates were changed by the filteration rates.

  • PDF

Deformation Characteristics of a Slope at a Coal Waste Depot through Analysis of Monitoring Results (계측결과 분석을 통한 석탄폐석 적치장 사면의 변형 특성)

  • Cho, Yong-Chan;Song, Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.19-27
    • /
    • 2013
  • Deformation of a slope at a coal waste depot and the natural slope under the depot was surveyed and investigated at Dogye village in Samcheock city, Gangwon Province. To investigate the behaviors of the slopes, wire sensors and a rain gauge were installed on the crest of the waste depot slope and inclinometers were installed in the natural slope. The results of deformation monitoring at the crest of the waste depot slope using wire sensors revealed increased deformation with increasing cumulative rainfall. The results of monitoring horizontal deformation of the natural slope revealed that maximum horizontal deformation was also affected by cumulative precipitation. However, the groundwater level at the natural slope showed no change with rainfall. These measurements confirm that deformation at coal mine waste depots is closely related to precipitation, indicating that self-loading at such depots increases with rainfall infiltration, thus causing deformation of the waste depot slope. In addition, increasing the self-load of the coal mine waste depot may cause deformation of the underlying natural slope.

임기광산 주변 수질특성 변화연구

  • 임길재;정영욱;지상우;홍성규
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.385-389
    • /
    • 2004
  • 임기납석광산 폐석적치장 상부의 계곡수로부터 폐석적치장 하부인 수영강 합수지점까지 수계를 따라 물시료 12개 지점을 대상으로 수질 및 안정동위원소 분석을 수행하였다. 폐석적치장으로부터 pH가 2.83이고 Fe, Al, Mn 등으로 심하게 오염된 산성배수가 유출되어 계곡수를 오염시키며 수계의 수질은 $Ca^{2+}$-SO$_{4}$$^{2-}$ 형태로 변화되고 폐석적치장 주변 수로에 적화현상을 유발하고 있다. 또한 안정동위원소 분석결과 임기납석광산 인근 수계에 가장 큰 오염부하를 유발하는 요소인 침출수(산성배수)의 기원은 강수기원으로 판단된다. 이는 폐석침출수 오염원 평가 및 처리에 유용한 자료로 이용 될 수 있을 것이다.

  • PDF

An Experimental Study on the Characteristics of Crushed Aggregate Using Quarry-Waste (석산폐석을 활용한 쇄석골재의 특성에 관한 시험적 연구)

  • 김경수;송기범
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.167-176
    • /
    • 1998
  • 골재의수요는 매년 크게 증가하고 있으나 천연골재는 점차 고갈되어 가고 있다. 따라서 기존석산들에서 발생되는 폐석자원을 쇄석골재로 활용하면 일거양득의 효과가 있다. 본 연구는 국내에서 가장 대규모 석산단지인 포천 및 익산지역 기존석산에서 발생되는 석산폐석에 대한 물리적, 화학적 및 광물학적 시험.분석을 실시하여, 쇄석골재로서 석산폐석의 특성규명과 활용가능성을 평가하였다. 연구결과, 포천과 익산지역에서 발생되는 석산폐석을 쇄석골재로 활용할 수 있을 것으로 판단되었으며, 폐석자원을 쇄석골재로 활용함으로써 골재의 수요에 보충하고, 산림 및 자연경관의 훼손과 환경오염을 야기할 수 있는 석산골재 신규개발의 억제에도 효과가 기대된다.

Reinforced Effect of Staple Fiber for Soil - Waste Stone Sludge (폐석분 혼합토의 단섬유 보강 효과)

  • Choi, Min-Kyu;Park, Beum-Sic;Kim, Young-Muk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.8
    • /
    • pp.45-55
    • /
    • 2012
  • This study is about the application of waste stone sludge as fill material. Waste stone sludge, weathered granite soil, and the mixture of the former and the latter strengthened with staple fiber are experimentally analyzed for measuring strength property. When staple fiber was mixed with waste stone sludge, weathered granite soil, and the mixture, there was a nearly linear relationship between the amount of the staple fiber and the increasing ratio of unconfined compressive strength. The increasing ratio of unconfined compressive strength was the largest in weathered granite soil. The increasing ratio of unconfined compressive strength of the mixture was similar to that of waste stone sludge. In the case of the mixture of weathered granite soil and waste stone sludge, an internal friction angle tended to increases rely on increasement of staple fiber content, whereas the change of cohesion was small. An internal friction angle was increased by 21 percent when staple fiber content is 0.75 percent. Comparing with weathered granite soil or waste stone sludge, strength parameters of the mixture were increased relatively. Thus strengthening effect of staple fiber in the mixture is expected.

Phase Transformation of Coal Tailing of Beneficiation with the Addition of Na2CO3 at High Temperature (Na2CO3의 첨가에 따른 석탄 선탄 폐석의 소결 상변화 연구)

  • YOU, Kwangsuk
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.73-78
    • /
    • 2020
  • To use a tailing obtained from coal beneficiation as a raw material for glass material, the behaviors of phase transformation of the tailing was investigated according to sintered temperature with the addition of Na2CO3. As a result of the experiment, mullite was formed at 700~1,100 ℃, and the mullite and the cristobalite just only existed at 1,450 ℃. The glassification ratio of the coal tailing was to be 97.9 wt.% at 1,450 ℃ with the addition of Na2CO3 to tailing weight ratios of 10 wt.%. However, in the case of sample of coal tailing with 20 wt.% Na2CO3 added, nepheline(Na2O·Al2O3·2SiO2) was produced during the re-sintering(2nd sintering) at 1,100 ℃. From the results, the suitable addition amount of Na2CO3 for glassification of coal tailing was found around 10 wt.%.

Bearing Capacity and Settlement of Reclaimed Land by Utilizing Waste Lime (폐석회를 활용한 성토매립지반의 지지력 및 침하특성에 관한 연구)

  • 신은철;오영인
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.175-184
    • /
    • 1999
  • Several major land reclamation projects such as the Inchon International Airport construction, Songdo New City construction, LNG Tank and LPG storage construction are underway along the coastal line of Inchon in Korea. This study was carried out to investigate the feasible use of waste lime in the land reclamation projects. Waste lime (hydrated lime) used in this study is produced as a by-product in the manufacturing process of $Na_2CO_3$ from local chemical factory in Inchon. This study presents the characteristics of bearing capacity and settlement on the ground formed by layers of waste lime and dredged soil. From the laboratory and in-situ plate load test, the ultimate bearing capacity by in-situ test was 1.25~1.37 times higher than that of the theoretical ultimate bearing capacity. Based on the settlement analysis by Magset- II, the total settlement of layered ground steadly increased up to the ratio of waste lime depth 0.2 and therefore rapidly increased with the increase of waste lime depth. The results of the present study indicate that the ratio of waste lime depth for reclamation work is about 0.2.

  • PDF

Characteristics of Waste Lime and Soil Mixture for Reusing of Roadbed Embanking Material (도로노반 성토재로의 재활용을 위한 폐석회 혼합토의 특성연구)

  • Hong, Seung-Seo;Kim, Young-Seok;Lee, Yong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5157-5164
    • /
    • 2010
  • Currently about 3.2 millon tons of waste lime are accumulated and annually 100,000 tons are producted. This study was carried out to investigate the characteristics of soil mixed with waste lime for reusing of roadbed embanking material. Waste lime used in this study is producted as a by-product in the manufacturing process of making $Na_2CO_3$ from local chemical factory in Incheon. In this study, the feasible reuse of waste lime mixed with granite weathered soil, clay, crushed rock was investigated through laboratory tests including specific gravity test, sieve analysis, hydrometer analysis, atterberg limit test, compaction test, unconfined compressive test, CBR test, permeability test, shear test, and abrasion test. The mixing rate is granite weathered soil, clay, crushed rock 80 % respectively and waste lime 20 % by weight. From the test results, it is shown that the waste lime and soil mixtures satisfy the criteria as road embanking material specification.