• Title/Summary/Keyword: 폐기물소각로

Search Result 442, Processing Time 0.031 seconds

Development for the Waste Plastics Process (폐플라스틱의 재활용 기술)

  • 여종기
    • Resources Recycling
    • /
    • v.6 no.2
    • /
    • pp.22-28
    • /
    • 1997
  • In recent yean thc problem of wastc plastics arc greatly incrcascd with ihe result uf lndushial growth. As a rcsult the amount of wastc plaslics in domestic area is appraxhnately 2,300,000 t<~nin 1996 base and contmuously increasing more than 12% cvcry ycar. Thc disposal way of these waste plastics arc dlLl malnly rely~ng on landill1 or partially incinuralion So that it hss become a senous social problem due to the second envirnmentd pollution. The tcchnologics iar prducing oil from the waste plastics have hccn dcvelopcd far along pennd and currently some of them are in a commercialiration stage Pyrolysis process in one of the major process m heating waslc plaslics bul still has some restlichons for the cammcrc~dizatian duc lo 11s emnom~cal problems assaciated with a systcmiltlc lecd collcctionidispnsJ ways. Cansldenng cnvaomcnld problems, thc inclease m the charge for waste matcds trcatmcnt and thc lmlitarion ni disposal area, it is inteicstcd that the wastc plastics treabncnt by pyrolysn. which would be the safest and the most eilic~ent process for cnnvcrting fecd wastc to rc-usablc rcsourccs. would he predomhant m ihe near h~lurc Thc shldy aims inr the development of haslc ted~nolagy for scaling up to a com~nercial sire through pyrolys~s process which is cnnduclcd under the absence of air. Furthern~orc the waste plastics can be recycled as iual gas or oil wilhout harmful effects in enviroment, The waste w e d plastics arc pyrolyzed in (he fluidized bcd rcaclor under continuous way and thc ail ylcld gives approx~marcly 47 4%.

  • PDF

Environmental Assessment of Shotcrete Using Recycled Industrial By-Products (Fly Ash) and Silica Fume (산업부산물(플라이애시)과 실리카퓸을 재활용한 숏크리트의 환경유해성 평가)

  • Park, Cheolwoo;Sim, Jongsung;Kang, Taesung;Park, Seongeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.159-165
    • /
    • 2010
  • The problems such as natural resource exhaustion, pollutant emission and waste generation are increasing worldwide with the industrial development. The quantity of the industrial by-product in Korea is 6 million tons a year, and even its basic treatment processes including landfill, incineration and storage have reached their limits. In this study, fly ash and silica fume were applied to shotcrete to develop a method for the reuse of resources and to increase the use of fly ash, which is an industrial waste. An environmental hazard evaluation is a must to actively address the worldwide environmental problems, though. Therefore, an environmental impact assessment was conducted using the chemical content analysis test and heavy metal exudation test, for ten mixtures that were obtained through the pre-mixing and compressive strength tests. The results of the compressive strength test showed that all mixtures satisfied national and international standards. Cr, Cd and Hg were not detected, and Pb was detected only in some cases with fly ash. Cu and As were detected in all mixtures, but all of them satisfied national and international standards.

Analyzing Changes in Spatial Extent of Influences from a Resource Recovery Facility in the Aspect of Housing Prices - A Case Study on the Nowon Facility in Seoul using Hedonic Price Model - (주택가격에 대한 자원회수시설 영향권 변화에 대한 연구 - 헤도닉 가격 모형을 이용한 노원자원회수시설에 대한 사례 -)

  • Kim, Hyunkyung;Park, Kyung Nan;Sohn, Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.3
    • /
    • pp.43-59
    • /
    • 2024
  • This study focuses on identifying the impacts of the Nowon resource recovery facility in Seoul, Korea, on the real transaction price of apartments in the neighboring areas between 2006 and 2022, and the spatial extent of the impact. Resource recovery facilities, which generate electricity and heating energy while disposing of waste, are typical unwanted facilities that have a negative impact on neighboring property prices. As direct landfilling of household waste is banned in Seoul from 2026 and nationwide from 2030, the demand for the expansion of waste incineration facilities, including resource recovery facilities, is expected to increase rapidly. In addition, social disputes related to the decline in neighboring property prices are expected to increase. This study analyses the impact of the Nowon resource recovery facility on surrounding apartment prices over a 17-year period since 2006 using hedonic price models for apartments, and finds that the Nowon resource recovery facility consistently has a negative impact on nearby apartment prices, the spatial extent of the impact is at least 1,000 meters from the facility, and the intensity of the negative impact weakens as the distance from the facility increases. The results of this study differ from recent studies finding that the spatial extent of the impact of resource recovery facilities in Seoul on surrounding property prices is limited within 500~600 meters, suggesting that a broader approach is needed to systematically manage social conflicts that are expected to increase with the growing social demand for resource recovery facilities.

Heavy Metals of Landfilled Biomass and Their Environmental Standard, Including CCA-treated Wood for Eco-housing Materials (방부처리 목재를 포함한 토양매립 바이오메스의 중금속 함량과 안전성 문제)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.37-45
    • /
    • 2006
  • Recently, wood-framed houses has been built in the Korea for pension. Wood is good material for human healthy, while the construction lumbers are treated with preservative such as CCA (chromated copper arsenate), which contain some toxic elements for human body. However, if the waste woody biomass treated with various heavy metals, which has been collected from house construction or demolition, was fired in the field, and incinerated or landfilled after mass collection, such components will result in the toxic air pollutants in the burning or land fills, and spreaded into other areas. So the careful selection of wood and chemicals are required in advance for house construction, in particular, for environment-friendly housings. Therefore, this study was carried out to determine the content of toxic heavy metals in woody materials such as domestic hinoki and imported hemlock treated with CCA for housing materials, and the post-treated wood components such as organic fertilizer, sludge, dry-distilled charcoal and carbonized charcoal, to be returned finally into soil. The results are as follows. 1) The chemical analysis of toxic trace elements in various solid biomass required accurate control and management of laboratory environment, and reagents and water used, because of the error of data due to various foreign substances added in various processing and transporting steps. So a systematic analyzers was necessary to monitor the toxic pollutants of construction materials. 2) In particular, the biomass treated with industrial biological or thermal conditions such as sludge or charcoals was not fully dissolvable after third addition of $HNO_3$ and HF. 3) The natural woody materials such as organic fertilizer, sludge. and charcoals without any treatment of preservatives or heavy metal components were nontoxic in landfill because of the standard of organic fertilizers, even after thermal or biological treatments. 4) The CC A-treated wood for making the construction wood durable should not be landfilled, because of its higher contents of toxic metals than the criterion of organic fertilizer for agriculture or of natural environment. So the demolished waste should be treated separately from municipal wastes.

Comparison of Anaerobic Digestion for food wastewater and food waste by HADS Pilot Plant (HADS Pilot Plant를 이용한 음폐수와 음식물쓰레기의 혐기성 소화 비교)

  • Ju, Donghun;Lee, Jungmin;Park, Seongbum;Sung, Hyunje
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.245-245
    • /
    • 2010
  • 우리나라 생활폐기물 중 음식물쓰레기는 가장 많은 부분을 차지하고 있다. 또한, 음식물쓰레기에서 발생되는 음폐수의 발생량은 8,926톤/일에 달하고 있지만, 이 중 극히 일부만이 하수처리장 등에서 병합 처리되고 있고 대부분은 해양 투기되고 있는 실정이다. 이에 본 연구에서는 독일 GBU사로부터 중온/습식/이상 혐기성 소화 기술을 도입하여 HADS Pilot Plant를 설치하였고, 2008년 3월부터 국내 음폐수 및 음식물쓰레기에 적합한 최적의 운전기술을 확보하기 위한 Pilot Test를 실시하였다. 본 실험에 사용된 HADS Pilot Plant는 산발효조($6m^3$), 메탄발효조($50m^3$), 안정화조/가스저장조($40m^3$)그리고 가스 소각기로 구성되어 있다. 그리고 적용 음폐수 및 음식물쓰레기는 경기도 Y군에 위치한 사료화 시설에 반입되는 것을 이용하였는데 음폐수는 평균 TS 13.5%, VS 80%, pH $3.7{\pm}0.2$의 성상을 나타내었다. 이를 이용해 계단식으로 유기물 부하를 증가시키면서 $4kgVS/m^3/d$까지 적용하며 중온 상태에서 혐기성 소화를 실시한 결과, $0.8Nm^3/kgVS_{rem}/d$의 바이오가스 회수 및 85%의 VS 감량이 가능함을 확인하였다. 그리고 음식물쓰레기는 음폐수와 달리 1차 파쇄/선별기 및 배관상에 설치되는 2차 미세파쇄/선별기를 통한 전처리를 실시하였고, 1차 파쇄/선별 후 평균적으로 TS가 17.4%, VS는 81%, pH는 $3.85{\pm}0.2$의 성상을 나타내는 음식물쓰레기를 2차 미세파쇄/선별기를 거쳐 Pilot Plant의 산발효조에 투입하여 중온상태에서 혐기성 소화를 실시하였다. 음폐수 적용시와 마찬가지로 계단식으로 유기물 부하를 증량하면서 $4kgVS/m^3/d$까지 적용하여 운전하였고, 그 결과 약 $0.9{\sim}1.2Nm^3/kgVS_{rem}/d$의 바이오가스 회수와 85~87%의 VS 감량 효율을 확인하였다. 음폐수와 음식물쓰레기의 혐기성 소화 실험 결과, 제거된 VS량을 기준으로 보았을 때, 음식물쓰레기에서 더 많은 바이오가스 발생하였는데 이는 음식물쓰레기에 존재하는 고형물이 미생물들의 서식 공간으로 활용됨에 따라 혐기성 소화 과정에서 일어나는 혼합 발효 및 공영양 대사가 음폐수 대비 좀 더 수월하게 일어날 수 있게 된 데에 따른 결과라고 생각된다. 당사의 HADS Pilot Plant test에서는 계단식의 순차적인 유기물 부하 증량과 총VFA/총 알카리도 비율을 0.3~0.4 수준이하로 유지하며 운전함에 따라 음폐수와 음식물 모두에서 안정적으로 $4kgVS/m^3/d$까지의 유기물 부하 적용이 가능하였다. 또한, 생산된 바이오가스 내 메탄의 함량은 60~65%를 유지하였으며, 메탄발효조의 pH는 별도의 조절이 없이도 운전기간 동안 평균 7.8~7.9 수준을 유지하였다. 이처럼 pH 3.7~3.8의 음폐수 또는 음식물쓰레기의 투입에도 안정적인 완충능력을 보여준 것은 소화조 내에서 기질로부터 분해되어져 나오는 암모니아와 이산화탄소가 강력한 버퍼 시스템을 구축하고 있음에 따른 결과로 사료된다. 그리고 음폐수와 음식물쓰레기의 경우 모두 85%이상의 높은 VS 제거율을 보여주었는데 이는 당사의 HADS Pilot Plant 소화조의 구조가 내통과 외통으로 구분되어져 있음에 따라 plug flow + CSTR의 특징을 가짐에 따른 결과로 판단된다. 상기한 결과를 바탕으로 향후에는 $5kgVS/m^3/d$ 수준의 유기물 부하 적용운전도 계획하고 있다.

  • PDF

The Recycling of Inorganic Industrial Waste in Cement Industry (시멘트산업에서 무기질 산업 폐·부산물의 재활용)

  • Kang, S.K.;Nam, K.U.;Seo, H.N.;Kim, N.J.;Min, K.S.;Chung, H.S.;Oh, H.K.
    • Clean Technology
    • /
    • v.6 no.1
    • /
    • pp.61-69
    • /
    • 2000
  • In this study, generation process and properties of inorganic industrial waste which can be used in cement industry were investigated. The scheme of recycling to use the selected waste as raw materials, mineralizer and flux, admixture and raw materials for special cement was decided and then various experiments were carried out. The experimental results were as follows ; In the use of industrial waste as raw materials, ferrous materials could be substituted by Cu-slag, Zn-slag, electric arc furnace or convertor furnace slag etc., and a siliceous material could be substituted by sand from cast-iron industry. By-products from sugar or fertilizer industry, which has $CaF_2$ as the main component, and jarosite from Zn refinery enabled clinker phases to be formed at lower temperature by $100{\sim}150^{\circ}C$. Adding Cu slag and STS sludge in proper proportion to cement improved properties of cement. Fly ash and limestone powder as admixture had the same effect on cement. As a raw material for special cement, aluminium waste sludge could be used in making ultra early strength cement, which had the compressive strength of $300kg/cm^2$ within 2hours. And two different ashes from municipal incinerator could be raw materials of the cement which was mainly composed of $C_3S$ and $C_{11}A_7{\cdot}CaCl_2$ as clinker phases.

  • PDF

Association of PAH-DNA adducts and Urinary PAH metabolites influenced by polymorphisms of xenobiotic metabolism enzymes in industrial wase incinerating workers (산업폐기물 소각장 근로자에서 요중 PAHs 대사산물과 혈중 aromatic-DNA adducts)

  • ;Masayoshi Ichiba
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.303-311
    • /
    • 2002
  • This study evaluated the concentrations of urinary metabolites of polycyclic aromatic hydrocarbons (PAHs) in industrial waste incineration workers. The effect of genetic polymorphisms of xenobiotic metabolism enzymes on urinary concentration of PAH metabolites was assessed. And, aromatic DNA adduct levels were also determined in total white blood cells. Fifty employees were recruited from a company handling industrial wastes located in Ansan, Korea: non-exposed group (n=21), exposed group (n=29). Sixteen ambient PAHs were determined by GC/MSD (NIOSH method) from personal breathing zone samples of nine subjects near incinerators. Urinary 1-hydroxypyrene glucuronide (1-OHPG), a major pyrene metabolite, was assayed by synchronous fluorescence spectroscopy after immunoaffinity purification using monoclonal antibody 8E11 (SFS/IAC). Multiplex PCR was used for genotyping for GSTMI/TI and PCR-RFLP for genotyping of CYP1A1 (MspI and Ile/Val). PAH-DNA adducts in peripheral blood WBC were measured by the nuclease P1-enhanced postlabeling assay. Smoking habit, demographic and occupational information were collected by self-administered questionnaire. The range of total ambient PAH levels were 0.00-7.00 mg/㎥ (mean 3.31). Urinary 1-OHPG levels were significantly higher in workers handling industrial wastes than in those with presumed lower exposure to PAHs (p=0.006, by Kruskal-Wallis test). There was a statistically significant dose-response increase in 1-OHPG levels with the number of cigarettes consumed per day (Pearson correlation coefficient=0.686, p<0.001). Urinary 1-OHPG levels in occupationally exposed smoking workers were highest compared with non-occupationally exposed smokers (p=0.053, by Kruskal-Wallis test). Smoking and GSTMI genotype were significant predictors for log-transformed 1-OHPG by multiple regression analysis (overall model R²=0.565, p<0.001), whereas smoking was the only significant predictor for log-transformed aromatic DNA adducts (overall model R²=0.249, p=0.201). Aromatic DNA adducts was also a significantly correlation between log transferred urinary 1-OHPG levels (pearson's correlation coefficient=0.307, p=0.04). However, the partial correlation coefficient adjusting for Age, Sex, and cigarette consumption was not significant (r=0.154, p=0.169). The significant association exists only in individuals with the GSTMI null genotype (pearsons correlation coefficient=0.516, p=0.010; partial correlation coefficient adjusting for age, sex, and cigarette consumption, r=0.363, p=0.038). Our results suggest that the significant increase in urinary 1-OHPG in the exposed workers is due to higher prevalence of smokers among them, and that the association between urinary PAH metabolites and aromatic DNA adducts in workers of industrial waste handling may be modulated by GSTMI genotype. There results remain to be confirmed in future larger studies.

  • PDF

Property Analysis of Municipal Solid Waste and Estimation of CO2 Emissions from Waste Incinerators (생활폐기물 특성 분석 및 소각시설의 CO2 배출량 평가)

  • Kim, Byung-Soon;Kim, Shin-Do;Kim, Chang-Hwan;Lee, Tae-Jung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.657-665
    • /
    • 2010
  • Carbon dioxide ($CO_2$) is known to be a major greenhouse gas partially emitted from waste combustion facilities. According to the greenhouse gas emission inventory in Korea, the quantity of the gas emitted from waste sector in 2005 represents approximately 2.5 percent of all domestic greenhouse gas emission. Currently, the emission rate of greenhouse gas from the waste sector is relatively constant partly because of both the reduced waste disposal in landfills and the increased amounts of waste materials for recycling. However, the greenhouse gas emission rate in waste sectors is anticipated to continually increase, mainly due to increased incineration of solid waste. The objective of this study was to analyze the property of Municipal Solid Waste (MSW) and estimate $CO_2$ emissions from domestic MSW incineration facilities. The $CO_2$ emission rates obtained from the facilities were surveyed, along with other two methods, including Tier 2a based on 2006 IPCC Guideline default emission factor and Tier 3 based on facility specific value. The $CO_2$ emission rates were calculated by using $CO_2$ concentrations and gas flows measured from the stacks. Other parameters such as waste composition, dry matter content, carbon content, oxidation coefficient of waste were included for the calculation. The $CO_2$ average emission rate by the Tier 2a was 34,545 ton/y, while Tier 3 was 31,066 ton/y. Based on this study, we conclude that Tier 2a was overestimated by 11.2 percent for the $CO_2$ emission observed by Tier 3. Further study is still needed to determine accurate $CO_2$ emission rates from municipal solid waste incineration facilities and other various combustion facilities by obtaining country-specific emission factor, rather than relying on IPCC default emission factor.

A Study on the Production of Landfill-Cover Material Using the Physical Characteristics of Sludge and the Reduction of Odor (슬러지의 물리적 특성을 이용한 매립복토재 생산과 악취저감에 대한 연구)

  • Park, Jung Hyun;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.2
    • /
    • pp.15-29
    • /
    • 2020
  • The aims of this study is to improve physical properties of the sewage sludge and the process sludge generated in the leachate treatment by mixing the dry fuel, to develop the neutral solidifing agents that reduce oder, and to recycle the sewage and the process sludges as landfill cover materials. The mixing ratio (W/W) of sludges and dry fuel was appropriate at about 1:1, and the mixed materials were shown to be homogeneous at that ratio. We could know that when the sludges were mixed with dry fuel, moisture contents and viscosities are reduced, and air passages are formed between particles and particles. The various mixing tests and odor tests showed that the neutral solidifing agent was effective for the odor reduction. The main ingredient of the solidifing agent is the ash of sewage sludge, enabling it competitive in waste recycling and production costs. The landfill cover, using developed neutral solidification agent, improved physical properties to satisfy the quality standards and to increase the compressive strength. It also proved to reduce the value of complex oder and the usage of solidification agent to 1/3 (3,000 to 1,000) and to 1/8 (50% to 6%), respectively, from the comparative study with alkaline solidified landfill cover. Further research is under way to prove that this can be mixed with general soil to be used as a soil improvement agent for plant cultivation.

Disassembly and Compositional Analysis of Waste LCD Displays (폐(廢) 디스플레이의 해체(解體) 및 성분조사(成分調査))

  • Lee, Sungkyu;Kang, Leeseung;Lee, Chan Gi;Hong, Myung Hwan;Cho, Sung-Su;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.22 no.2
    • /
    • pp.29-36
    • /
    • 2013
  • Although Korean domestic production of flat panel displays totalled more than 48 trillion KRW in 2007, most of the flat panel display wastes have been land-filled or incinerated, which greatly overshadows Korean national prestige as a world leading producer and developer of flat panel display devices. Countries such as Japan or EU possess quite limited land-fill capability and have sought ways to dispose of WEEEs from environment-friendly perspective rather than recovery of valuable materials from the wastes. Considering relatively short cycle of about 5 years for flat panel display devices, it is estimated that more than 5 million units will be accumulated as wastes by 2015. Urban mining is a most suitable countermeasures against China's monopoly of rare and rare earth metals, which are contained in flat panel display wastes. Therefore, materials recycling of waste LCD units has to be developed and commercialized soon enough for economic and environment-friendly recovery of valuable resources hidden in LCD wastes.