• Title/Summary/Keyword: 평형구조

Search Result 654, Processing Time 0.023 seconds

EA Study on Seismic Resistant Method for Gravity Structure in Port (부두 내 중력식 구조물 내진 보강을 위한 공법의 적정성 연구)

  • Na, Sukhyun;Lee, Donghyuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.11
    • /
    • pp.13-18
    • /
    • 2022
  • In this study, the suitability of the grouting method will be evaluated by analyzing seismic reinforcement methods for the stability of gravity structure in Port. The evaluation categories are liquefaction, sliding, toppling and circular failure. To compare the appropriateness of the seismic reinforcement method, the low mobility mortar injection, one of the grouting method and the SPC file and GRB method, which are pile wall type reinforcement methods, were evaluated and compared respectively. The object of the evaluation is the gravitational structure of Po-Hang old port. As a result of the evaluation, both the grouting method and the pile wall type reinforcement method are considered to have sufficient stability. Therefore, in the case of the gravity structure, the grouting method is more efficient than the seismic reinforcement method considering construction efficiency, economic efficiency, maintenance and similar construction cases.

Development of Analysis Program for PSC Beams with Unbonded External Tendons (외부 비부착 강선을 갖는 PSC보의 해석프로그램 개발)

  • Kwak, Hyo-Gyoung;Son, Je-Kuk;Kim, Sun-Yong;Park, Young-Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.247-260
    • /
    • 2006
  • In this paper, an analytical method which can describe the structural behavior of prestressed concrete (PSC) bridges reinforced with the unbonded external tendon is developed. Since the unbonded external tendon is directly installed to the deviators while maintaining a straight configuration, it has a different deformation field from that of concrete and accompanies the secondary effect caused by the change of the primary eccentricity between concrete and external tendon. In advance, the friction slip at the deviators is also taken into consideration on the basis of the force equilibrium between the friction force and the driving force. Through correlation studies between experimental data and analytical results, it is verified that the proposed numerical model can effectively predict the structural behavior of PSC beam bridges with comparative precision.

Nonlinear Flexural Modeling of Prestressed Concrete Beams with Composite Materials (복합소재 프리스트레스트 콘크리트보의 비선형 휨 모델링)

  • ;;Naaman, Antoine
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.269-280
    • /
    • 1998
  • Recently, application of composite materials such as fiber reinforced concretes(FRCs) and fiber reinforced plastics(FRPs) in conjunction with conventional structural components has become one of the main research areas. A proper use of advanced composite materials requires understanding their resistance mechanism and failure mode when they are applied to structures or their components. Particular considerations are given in this research to develop an analytical model which can predict the nonlinear flexural responses of bonded and unbonded prestressed concrete beams possibly having layers of different cementitious composite matrices in a section and/or FRP tendons. The block concept is used, which can be regarded as an intermediate modeling method between the couple method with one block and the layered method with multiply sliced layers in a section. In order to find a particular deflection point of a beam under load, solutions to the 2N-variables are found numerically by using approximate N-force equilibrium equations and N-moment equilibirum equations. The model is shown to successfully predict the flexual behavior of variously reinforced bonded and unbonded prestressed concrete beams. The model is also successful in simulating a gradually increasing load after sudden drop inload resistance due to fracture of one or more FRP tendons. This feature is useful in tracing the overall load-deflection response of a beam prestressed with brittle FRP tendons.

Optimal Active-Control & Development of Optimization Algorithm for Reduction of Drag in Flow Problems(3) -Construction of the Formulation for True Newton Method and Application to Viscous Drag Reduction of Three-Dimensional Flow (드래그 감소를 위한 유체의 최적 엑티브 제어 및 최적화 알고리즘의 개발(3) - 트루 뉴턴법을 위한 정식화 개발 및 유체의 3차원 최적 엑티브 제어)

  • Bark, Jai-Hyeong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.6
    • /
    • pp.751-759
    • /
    • 2007
  • We have developed several methods for the optimization problem having large-scale and highly nonlinear system. First, step by step method in optimization process was employed to improve the convergence. In addition, techniques of furnishing good initial guesses for analysis using sensitivity information acquired from optimization iteration, and of manipulating analysis/optimization convergency criterion motivated from simultaneous technique were used. We applied them to flow control problem and verified their efficiency and robustness. However, they are based on quasi-Newton method that approximate the Hessian matrix using exact first derivatives. However solution of the Navier-Stokes equations are very cost, so we want to improve the efficiency of the optimization algorithm as much as possible. Thus we develop a true Newton method that uses exact Hessian matrix. And we apply that to the three-dimensional problem of flow around a sphere. This problem is certainly intractable with existing methods for optimal flow control. However, we can attack such problems with the methods that we developed previously and true Newton method.

Synthesis and stability relations of zoisite $Ca_2$Al$_3$Si$_3$O$_{12}$(OH) at 2-4 kbar (조이사이트 $Ca_2$Al$_3$Si$_3$O$_{12}$(OH)의 합성 및 2-4 kbar에서의 안정관계)

  • Kim Hyung Shik;Park Chan Soo
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.42-48
    • /
    • 1992
  • The equilibrium pressure-temperature curve of the reaction: 6 Ca$_2$Al$_3$(OH)Si$_3$O$_{12}$=6 CaAl$_2$Si$_2$O$_{8}$+2 Ca$_3$Al$_2$Si$_3$O$_{12}$+Al$_2$O$_3$+3 H$_2$O zoisite anorthite grossularite corundum was experimentally determined using both externally and internally heated pressure vessels in the pressure range of 2-4 kbar. Synthetic zoisite, anorthite, grossularite and corundum were used as starting materials. Starting materials were synthesized at 13-16 kbar using the piston-cylinder apparatus. The dehydration temperature of zoisite at 2 kbar is 550${\pm}$12$^{\circ}C$ and at 4 kbar is 575${\pm}$20$^{\circ}C$. Low thermal stability of synthetic zoisite relative to natural zoisite at 4 kbar is attributed to the structural disorder of synthetic anorthite.

  • PDF

Stress Constraint Topology Optimization using Backpropagation Method in Design Sensitivity Analysis (설계민감도 해석에서 역전파 방법을 사용한 응력제한조건 위상최적설계)

  • Min-Geun, Kim;Seok-Chan, Kim;Jaeseung, Kim;Jai-Kyung, Lee;Geun-Ho, Lee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.6
    • /
    • pp.367-374
    • /
    • 2022
  • This papter presents the use of the automatic differential method based on the backpropagation method to obtain the design sensitivity and its application to topology optimization considering the stress constraints. Solving topology optimization problems with stress constraints is difficult owing to singularities, the local nature of stress constraints, and nonlinearity with respect to design variables. To solve the singularity problem, the stress relaxation technique is used, and p-norm for stress constraints is applied instead of local stresses for global stress measures. To overcome the nonlinearity of the design variables in stress constraint problems, it is important to analytically obtain the exact design sensitivity. In conventional topology optimization, design sensitivity is obtained efficiently and accurately using the adjoint variable method; however, obtaining the design sensitivity analytically and additionally solving the adjoint equation is difficult. To address this problem, the design sensitivity is obtained using a backpropagation technique that is used to determine optimal weights and biases in the artificial neural network, and it is applied to the topology optimization with the stress constraints. The backpropagation technique is used in automatic differentiation and can simplify the calculation of the design sensitivity for the objectives or constraint functions without complicated analytical derivations. In addition, the backpropagation process is more computationally efficient than solving adjoint equations in sensitivity calculations.

Change of Statical Behavior and Ultimate Capacity of Steel Cable-stayed Bridges after Cable Failure (케이블 단선 후 강사장교의 구조 및 극한 거동 변화)

  • Kim, Seung-Jun;Choi, Jun-Ho;Won, Deok-Hee;Han, Taek-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.747-761
    • /
    • 2011
  • This paper presents an investigation on the change in the statical behavior and the ultimate capacity of steel cable-stayed bridges after cable failure. Cable failure can occur due to fire, direct vehicle clash accidents, cable or anchorage fatigue, and so on. Moreover, the cable may be temporarily disconnected during cable replacement work. When cable failure occurs, the load, that was supported by the broken cable is first transferred to another cable. Then the structural state changes due to the interaction between the girder, mast, and cables. Moreover, it can be predicted that the ultimate capacity will decrease after cable failure, because of the loss of the support system. In this study, the analysis method is suggested to find the new equilibrium state after cable failure based on the theory of nonlinear finite element analysis. Moreover, the ultimate analysis method is also suggested to analyze the ultimate behavior of live loads after cable failure. For a more rational analysis, a three-step analysis procedure is suggested and used, which consisted of initial shape analysis, cable failure analysis, and live load analysis. Using this analysis method, an analytical study was performed to investigate the changes in the structural state and ultimate behavior of steel cable-stayed bridges.

Catalyst-free 유기 금속 화학 증착법을 이용한 InN 나노구조의 성장

  • Kim, Min-Hwa;Lee, Cheol-Ho;Jeong, Geon-Uk;Mun, Dae-Yeong;Jeon, Jong-Myeong;Kim, Mi-Yeong;Park, Jin-Seop;Lee, Gyu-Cheol;Yun, Ui-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.264-265
    • /
    • 2010
  • 최근, nanorod나 nanowire와 같은 1차원의 나노구조가 나노디바이스로 각광을 받고 있다. [1] 특히 InN는 3족 질화물 반도체 중 가장 작은 밴드갭 에너지와 뛰어난 수송 특성을 가지고 있어 나노디바이스로의 응용에 적합한 물질이다. [2] 그러나 InN는 큰 평형증기압을 가지므로 쉽게 인듐과 질소로 분해되는 특성이 있어 나노구조로의 성장이 쉽지 않음이 알려져 있다. [3] 최근 연구결과에 따르면, InN 나노구조는 금속 catalyst를 사용한 방법이나, 기판 위 패턴을 이용하여 성장하는 방법, 염소를 사용한 방법이 널리 쓰이고 있다. [4,5,6] 그러나 이 방법들은 의도치 않은 불순물의 원인이 되거나 다른 추가적인 과정을 필요로 한다는 문제점도 일부 가지고 있다. 본 연구에서는 catalyst-free 유기 금속 화학 증착법 (MOCVD)를 이용하여 $Al_2O_3$ (0001)면 위에 InN nanostructure를 성장하였다. InN nanostructure 성장 시 트리메틸인듐(TMIn)과 암모니아($NH_3$) 를 전구체로 사용하였으며, 캐리어 가스로는 질소를 사용하였다. 또한 모든 샘플의 성장시간은 60분으로 고정하였으나, 성장 시 온도의 의존성을 보기 위해 $680-710^{\circ}C$ 의 온도범위에서 성장을 진행하였다. 그 결과 InN는 본 실험에서 적용된 성장온도범위 내에서 온도가 증가함에 따라 초기에는 columnar구조로 성장된 박막의 형태에서 wall이 배열된 형태로 변화하며 결국 $710^{\circ}C$ 의 온도에서 nanorod로 성장하게 된다. 성장된 InN의 나노구조는 X-선 회절 측정법, 주사 전자 현미경 그리고 투과 전자 현미경을 이용하여 각각의 구조적 특성을 분석하였다. X-선 회절 측정법과 주사 전자 현미경을 통한 분석결과에서는 이들 nanorods가 대부분 c 방향으로 수직하게 정렬되어 있음을 확인 할 수 있었다. 또한, $690^{\circ}C$ 에서 60분간 성장된 InN의 wall 구조의 두께는 200 nm, 길이는 $2-2.5\;{\mu}m$로 관찰되었으며, $710^{\circ}C$에서 60분간 성장된 InN nanorod의 지름은 150 nm, 길이는 $3\;{\mu}m$ 정도로 관찰되었다. 이를 통하여 볼 때 성장 온도가 InN의 나노구조 형성 시 표면의 모폴로지변화에 중요한 변수로 작용함을 알 수 있다. 본 발표에서는 이러한 표면 형상 및 구조 변화가 성장온도에 따른 관계성을 가짐을 InN의 분해와 성장의 경쟁적인 관계에 의해 논의할 것이다.

  • PDF

Inelastic Nonlinear Analysis of Arch Truss and Space Truss Structures (아치 트러스 및 공간 트러스 구조의 비탄성 비선형 거동해석)

  • Kim, Kwang-Joong;Jung, Mi-Roo;Kim, Yeon-Tae;Baek, Ki-Youl;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.5
    • /
    • pp.47-58
    • /
    • 2008
  • Spatial structure is an appropriate shape that resists external force only with in-plane force by reducing the influence of bending moment, and it maximizes the effectiveness of structural system. With this character of the spatial structure, generally long span is used. As a result, large deflection is accompanied from the general frame. the structure is apt to result in a large deflection even though this structure experiences a small displacement in absence. Usually, nonlinear analysis in numerical analysis means geometric nonlinearity and material nonlinearity and complex nonlinearity analysis considers both of them. In this study, nonlinear equation of equilibrium considering geometric nonlinearity as per finite element method was applied and also considered the material nonlinearity using the relation of stress-strain in element. It is applied to find unstable result for tracing load-deflection curve in the numerical analysis tech. especially Arc-length method, and result of the analysis was studied by ABAQUS a general purpose of the finite element program. It is found that the present analysis predicts accurate nonlinear behavior of plane and space truss.

  • PDF

Monitoring of Coastal Erosion and Accretion Changes using Sea Walls Surveying (호안측량에 의한 해안침식 및 퇴적 변화량 모니터링)

  • Lee, Hyung-Seok;Um, Dae-Yong;Jang, Eun-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.186-195
    • /
    • 2005
  • Topography of beach line is keeping stability for several years, their soil values have been maintained in balances. Install of coastal structures have caused deformation for beaches and acted as a function to structures. Therefore, quantitative prediction of beaches topography according to structure install is required to prevent the beaches deformation and progress proper coastal preservation work. In this study, we analyzed coastal changes caused by erosion and accretion according to development and drew up a cross-section to share 8 stations using coordinates and depth surveying in groin of Soheuksan island port. Elevation distribution and changes by observation period is calculated -0.30m~+0.20m after comparing results of five months in October 7, 2004 surveying results and fell into insignificance. We thinks periodic observation of coastal erosion and accretion take place for the season and long-term coastal changes in beaches width is analyzed.

  • PDF