• Title/Summary/Keyword: 평판충돌

Search Result 100, Processing Time 0.024 seconds

An Experimental Study of the Wall Temperature of the Supersonic Impinging Coaxial Jet Using an FLIR (적외선 카메라를 이용한 초음속 충돌 동축제트의 벽면 온도 측정)

  • Gwak, Jong-Ho;Kumar, V. R. Sanal;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1631-1636
    • /
    • 2004
  • The supersonic impinging jet has been extensively applied to rocket launching system, gas jet cutting control, gas turbine blade cooling, etc. In such applications, wall temperature of an object on which supersonic jet impinges is a very important factor to determine the performance and life of the device. However, wall temperature data of supersonic impinging jets are not enough to data. The present study describes an experimental work to measure the wall temperatures of a vertical flat plate on which supersonic, dual, coaxial jet impinges. An Infrared camera is employed to measure the wall temperature distribution on the impinging plate. The pressure ratio of the jet is varied to obtain the supersonic jets in the range of over-expanded to moderately under-expanded conditions at the exit of coaxial nozzle. The distance between the coaxial nozzle and the flat plate was also varied. The coaxial jet flows are visualized using a Shadow optical method. The results show that the wall temperature distribution of the impinging plate is strongly dependent on the jet pressure ratio and the distance between the nozzle and plate.

  • PDF

An experimental study on the heat transfer and turbulent flow of round jet impinging the plate with temperature gradient (온도구배를 갖는 평판에 대한 원형 충돌제트의 열전달 및 난류유동에 관한 실험적 연구)

  • 한충호;이계복;이충구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.855-860
    • /
    • 1999
  • An experimental study of jet impingement on the surface with linear temperature gradient is conducted with the presentation of the turbulent characteristics and the heat transfer rates measured when this jet impinges normally to a flat plate. The jet Reynolds number ranges from 30,000 to 90,000, the temperature gradient of the plate is 2~$4.2^{\circ}C$/cm and the dimensionless nozzle to plate distance(H/D) is from 6 to 10. The results show that the peak of heat transfer rate occurs at the stagnation point, and the heat transfer rate decreases as the radial distance from the stagnation point increases. A remarkable feature of the heat transfer rate is the existence of the second peak. This is due to the turbulent development of the wall jet. Maximum heat transfer rate occurs when the axial distance from the nozzle to nozzle diameter(H/D) is 8. The heat transfer rate can be correlated as a power function of Prandtl number, Reynolds number and the dimensionless nozzle to plate distance(H/D). It has been found that the heat transfer rate increases with increasing turbulent intensity.

  • PDF

Ethanol Droplet Impact Behavior Visualization on the Flat and 50㎛ grating groove Al Surface (알루미늄 평판 및 50 ㎛ 간격 격자 표면에 대한 에탄올 액적 충돌 거동 가시화)

  • Kang, Dongkuk;Kwon, Daehee;Chun, Doo-Man;Yeom, Eunseop
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.18-25
    • /
    • 2020
  • The droplet impact behavior is dominated by some parameters such as surface temperature, We number, surface and fluid property. Especially, Leidenfrost effect which prevents the contact between surface and droplet is very powerful phenomenon for determining droplet impact behavior. Due to this effect, the impact regime is divided into contact boiling regime and film boiling regime whether the droplet contact with the surface. Many studies have found that surface micro-structures which processed by surface processing are effective to overcome the Leidenfrost effect. In this study, droplet impact behaviors were compared using ethanol both on flat and laser-ablated Al surface. On the flat surface, impact regime was mainly divided by surface temperature. And there is key dominant parameter for each regime. On the laser-ablated surface, we could see changed impact regime and different impact behavior such as jetting and ejection of tiny droplets despite of same impact conditions.

Cooling of a Rotating Heated Flat Plate by Water Jet Impingement (회전전열평판(回轉傳熱平板)의 충돌수분류(衝突水噴流)에 의한 냉각(冷却))

  • Jeon, Sung-Taek;Kim, Yeun-Young;Lee, Jong-Su;Park, Jong-Suen;Lee, Doug-Bong
    • Solar Energy
    • /
    • v.15 no.2
    • /
    • pp.47-64
    • /
    • 1995
  • An experimental investigation is carried out to see the local heat transfer characteristics of a rotating heated flat plate surface with constant heat flux when a normal water jet is impinging on this surface. The effects of jet Reynolds number, rotating Reynolds number are investigated while the distance between the nozzle and the flat plate is set fixed. As a result, correlations to relate the local Nusselt number to the local rotational Reynolds number, jet Prandtl number and the dimensionless radial position are presented.

  • PDF

Thermal Flow Characteristics of Impinging Air Jet by Shape of Turbulence Promoter (난류촉진체 형상에 의한 충돌제트의 열유동 특성)

  • Kum, Sungmin;Jho, Shigie;Yu, Byeonghun;Lee, Seungro
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.187-193
    • /
    • 2012
  • In this study, it was experimentally investigated the effect of the clearances distance between the rod and the impinging plate on characteristics of the thermal flow. For the heat transfer enhancement of wall jet region, the right triangle and the square rods were arranged in front of the impinging plate with various clearance distances. As results, the heat transfer enhancement rate of potential core region at H/B=2 was higher than that of transition region at H/B=10. In this experiment range, the maximum heat transfer enhancement rate was about 46 % higher at the square rod with H/B=2 and C=1mm compared with the flat plate. The heat transfer enhancement rate of the right triangle rod was on average about 3 to 8 % higher than that of the square rod, regardless of the clearance.

Experimental and Computational Studies of the Pulse Wave Impinging upon a Vertical Flat Plate (수직평판에 충돌하는 펄스파에 관한 실험적/수치해석적 연구)

  • 이동훈;김희동;강성황
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.285-291
    • /
    • 2001
  • The impingement of a weak shock wane discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was varied in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

A Study on the Characteristics of the Pulse Wave Impinging upon a Flat Plate (평판에 충돌하는 펄스파의 특성에 관한 연구)

  • Kim, H.D.;Lee, D.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.562-567
    • /
    • 2000
  • The Impingement of a weak shock wave discharged from the open end of a shock tube upon a flat plate was investigated using shock tube experiments and numerical simulations. Harten-Yee Total Variation Diminishing method was used to solve axisymmetric, unsteady, compressible flow governing equations. Experiments were carried out to validate the present computations. The effects of the flat plate and baffle plate sizes on the impinging flow field over the flat plate were investigated. Shock Mach number was vaned in the range from 1.05 to 1.20. The distance between the plate and shock tube was changed to investigate the effect on the peak pressure. From both the results of experiments and computations we obtained a good empirical equation to predict the peak pressure on the flat plate.

  • PDF

Dynamic Behavior of Heterogeneous Impinging Droplets onto High Temperature Plate (고온평판에 충돌하는 비균일혼합액적의 동적거동 특성)

  • Lee, Choong Hyun;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.3
    • /
    • pp.20-23
    • /
    • 2015
  • In this experiment, a heterogeneous droplet consisted of de-ionized water and olive oil was made through two 31G injection needles. The injection flow rate was $50{\mu}{\ell}/min$ and the droplet size was 2 mm. The droplet was impinged onto a sapphire plate which was heated up to $300^{\circ}C$ by a heater. Two high speed cameras were used for visualization, and the frame rate was 20,000 fps. A 150W metal halite lamp was used for illumination. The dropping height was fixed to 20 mm and the corresponding Weber number was 10.6 based on water. Due to different boiling points of two liquids, partial boiling features of heterogeneous droplet was observed. At the Leidenfrost condition, micro explosion phenomenon has occurred.

Heat transfer characteristics between a rotating flat plate and an impinging water jet (회전전열평판과 충돌수분류간의 열전달특성에 관한 실험적 연구)

  • 전성택;이종수;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.509-522
    • /
    • 1998
  • An experimental investigation is reported on the heat transfer coefficient from a rotating flat plate in a round turbulent normally impinging water jet. Tests were conducted over a range of jet flow rates, rotational speeds, jet radial posetions with various combinations of three jet nozzle diameter. Dimensionless correlation of average Nusselt number for laminar and turbulent flow is given in terms of jet and rotational Reynolds numbers, dimensionless jet radial position. We suggested various effective promotion methods according to heat transfer characteristics and aspects. The data presented herein will serve as a first step toward providing the information necessary to optimize in rational manner the cooling requirement of impingement cooled rotating machine components.

  • PDF

Study on Sonic/Supersonic Impinging Jets on a Flat Pate (평판에 충돌하는 음속/초음속 제트유동에 관한 연구)

  • 김희동;이호준;서태원;금기헌
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.15-15
    • /
    • 1998
  • The problem of the impingement of a sonic or a supersonic jet on a flat surface has not only wide applications but has also interesting and very complex flow phenomena. The main applications of this impinging jet include prediction of solid surface erosion, design of launcher systems, stage separation of multi-stage rocket system, V/STOL operations, thermal spray system, and manufacturing technologies of materials. Much have been learned about the supersonic impinging jet flow field but many fundamental questions have not been answered satisfactorily. The problem encompasses many facets of fluid dynamics which, in combination, present the compressibility effect and the viscous-inviscid interaction, coupled with flow separation and reattachment. What is more, there are many flow parameters that have on the impinging jet flow field, for example, Mach number, Reynolds number, pressure ratio, distance between the nozzle exit and flat plate, jet shock structure, nozzle diameter and etc. Thus the existing data on the supersonic impinging jet flow present considerable disagreement in which quantitative comparison between one result and another is often impossible.

  • PDF