• Title/Summary/Keyword: 평판구조물

Search Result 214, Processing Time 0.023 seconds

Continuum Modeling and dynamic Analysis of Platelike Truss Structures (평판형 트러스구조물의 연속체 모델링 및 동적해석)

  • 이우식;김종윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1021-1029
    • /
    • 1992
  • A rational and straightforward method is introduced for developing continuum models of large platelike periodic lattice structures based on energy equivalence. The procedure for developing continuum plate models involves the use of existing well-defined finite element matrices for the easy calculation of strain and kinetic energies of a repeating cell, from which the reduced stiffness and mass matrices are obtained in terms of continuum degrees- of-freedom defined in this paper. The equivalent continuum plate properties are obtained from the direct comparison of the reduced matrices for continuum plate with those for lattice plate. The advantages of the present continuum method are that it may be applied to arbitrary lattice configurations and may give most diverse equivalent continuum plate properties including all kinds of coupling, while other methods may give only limited structural properties. To evaluate the continuum method developed in this paper, free vibration analyses for both of continuum and lattice plates are conducted. Numerical results show that the present continuum method gives very reliable structural and dynamic properties compared to other well-recognized methods.

Improvement of Impact Resistance of Composite Structures using Shape Memory Alloys (형상기억합금을 이용한 복합재료 구조물의 저속충격특성 향상)

  • Kim, Eun-Ho;Rim, Mi-Sun;Lee, In;Kim, Hyung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.453-456
    • /
    • 2009
  • Impact resistance of shape memory alloy hybrid composite(SMAHC) plates were experimentally investigated. Shape memory alloy(SMA) have large failure strain and failure stress and can absorb large strain energies through phase transformation. SMA wires were embedded in composite plates to improve their weak impact resistance. Tensile tests of SMA wires were performed at various temperature to investigate their thermo-mechanical properties. Low-Velocity impact tests of several types of composite plates with SMA/Al/Fe were performed. Embedding SMA wires was most effective to improve impact resistance of composite plates. The effects of SMA position on impact resistance were also investigated.

  • PDF

Integrity Evaluation for 3D Cracked Structures(I) (3차원 균열을 갖는 구조물에 대한 건전성 평가(I))

  • Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3295-3300
    • /
    • 2012
  • Three Dimensional finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model. Nodes are generated by the bubble packing, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze interaction effects of two dissimilar semi-elliptical cracks in a plate subjected to uniform tension.

Development of Sound Radiation Analysis System Using the Results of Power Flow Finite Element Method (파워흐름유한요소법의 진동해석 결과를 이용한 구조물의 방사소음 해석시스템 개발)

  • 이호원;홍석윤
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.21-30
    • /
    • 2001
  • The analysis system implementing a serial process from structural vibration to sound radiation has been developed using both the power flow finite element method (PFFEM) known as a new vibrational analysis technique in medium to high frequency ranges and the acoustic boundary element method (BEM) which is effective in analyzing the sound radiation problems. The vibration analysis for arbitrary shape structures composed of plates is performed, and using the vibration energy density obtained from this analysis as the velocity boundary conditions for an acoustic analysis, vibro-acoustic analysis has been processed. To verify the developed system, we select a simple structure model and compare the results of developed system with those of SYSNOISE, and also the developed system is applied for the vibro-acoustic analysis of various structures in shapes.

  • PDF

Displacement Prediction of Swept Composite Cantilevered Panel Wings Using Strains (변형률을 이용한 복합재 평판 후퇴익 구조물의 변위 예측)

  • Kim, Mun-Guk;You, Je-Gyun;Kim, So-Young;Kim, In-Gul;Kim, Geun-Sang;Jeon, Min-Hyeok
    • Composites Research
    • /
    • v.30 no.5
    • /
    • pp.280-287
    • /
    • 2017
  • The complex deformation of the swept composite wing occurs due to the torsional load and bending load during the flight. Therefore, prediction for displacement of swept composite wing is required for structural health monitoring. Wing displacements can be predicted by using relationship between displacements and strains. The strain distributions on the fixed-end are complex due to the geometric shape of the swept wing. Because of those strain distribution, the wing displacement can be diversely predicted by the strain sensing locations. In this paper, displacements prediction of swept composite wing was performed by considering complex strain distributions. The predicted displacements under various loading condition were consistent with those calculated by FEA and verified through the bending test.

Guided Wave Tomographic Imaging Using Boundary Element Method (경계요소법을 이용한 유도초음파 토모그래피 영상화 기법)

  • Piao, Yunri;Cho, Youn-Ho;Jin, Lianji;Ahn, Bong-Young;Kim, Noh-Yu;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.338-343
    • /
    • 2009
  • Tomography is the imaging method of cross sectional area using multi beam signals and is mainly applied to the medical diagnosis to acquire the image of the inside human body. This method is pretty meaningful in nondestructive evaluation field since the imaging of the inspection region can enhance the comprehension of the inspector. Recently, much attention has been paid to the guided wave for the diagnosis of platelike structures. So, in this work, a study on the imaging of the damage location in a plate was carried out on the basis of computer aided analysis of guided waves and tomographic imaging. To this end, boundary element method was employed to analyze the effect of the damage in plate on the propagation of the guided waves and the analytic results were applied to the tomographic imaging method to identify the damage location. Consequently, it was shown that the number of sensors heavily affect the inspection performance of the damage location.

Investigating the Spatial Focusing of Time Reversal Lamb Waves Using a Virtual Sensor Model on a Rectangular Plate (직사각형 판에서 가상탐지자 모델을 이용한 시간반전램파의 공간모임 규명)

  • Park, Hyun-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.5
    • /
    • pp.553-567
    • /
    • 2011
  • During the last three years, the possibility of the time reversal Lamb waves has been paid attention to for structural health monitoring of a plate. This study proposes a numerical scheme which can simulate the spatial focusing of time reversal Lamb waves on a rectangular plate. In this scheme, a time reversal process is formulated in the frequency domain using active virtual sensors being equivalent to the mirror effects of an actual sensor due to wave reflection on the plate boundary. Forward and backward Lamb wave propagations are represented by scalar functions for simulating the spatial focusing of time reversal Lamb waves. The validity of the proposed scheme is demonstrated through the comparison to the results of finite element analysis in which the spatial focusing of time reversal Lamb waves is realized by wafer-type piezoelectric(PZT) transducers collocated on a rectangular plate.

Vibration Analysis of Quadrangular Plate having Attachments by the Assumed Mode Method (Assumed Mode Method에 의한 부가물(附加物)을 갖는 임의(任意) 사각형(四角形) 평판(平板)의 진동해석(振動解析))

  • S.Y. Han;Y.C. Huh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.116-125
    • /
    • 1995
  • In ship and of offshore structures, there exist many local panels of various shapes having many kinds of attachments reducible to damped spring-mass systems. For the vibration analysis of panels, analytical methods such as Rayleight-Ritz method or the assumed mode method can be efficiently applied. There have been many studies on the vibration analysis of rectangular panels using the analytical methods but relatively few for arbitrary shape panels. An efficient formulation based on the assumed mode method is presented for the vibration analysis of an arbitrary quadrangular plate having concentrated masses, supporting springs such as pillars and spring-mass systems. In the formulation, the natural coordinate system is used for the efficient treatment of an arbitrary quadrangular shape. Through some numerical calculations, accuracy and efficiency of the presented method are shown.

  • PDF

Structural Dynamics Modification Using Position of Beam Stiffener on Plate (평판에서 빔 보강재의 결합 위치를 이용한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.599-604
    • /
    • 2002
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF

통합형 점소성 구성방정식을 적용한 유한요소해석에 관한 연구

  • Kim, Jong-Beom;Lee, Hyeong-Yeon;Yoo, Bong;Kwak, Dae-Young;Lim, Yong-Taek
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.1014-1020
    • /
    • 1995
  • 고온구조물은 고온에서의 운전상태에 따라 복잡한 하중이력을 경험하게 됨으로써 상온에서 발생하는 손상 기구와는 달리 온도 의존성을 가질 뿐만 아니라, 상온에서 볼 수 없는 크립-피로의 상호작용에 의한 손상현상이 나타나게 된다. 따라서 고온 구조물의 건전성 평가를 위한 비탄성 해석을 신뢰성 있게 수행하기 위해서는 구조물의 비선형 거동을 비교적 정확히 예측할 수 있는 통합 구성방정식의 개발 및 적용과 온도에 따른 재료의 물성치 확보가 필수적이다. 본 연구에서는 통합 점소성 모델인 수정된 Chaboche 모델에 대해서 내연적 시간 적분법을 적용하여 ABAQUS의 UMAT으로 구현하였고, 개발된 프로그램을 이용하여 INCONEL 718을 사용한 단순 인장해석, 반복 소성 특성해석 및 크립 해석을 수행하여 프로그램의 신뢰성을 평가하였다. 또한 원공이 있는 평판에 대한 예제해석을 수행함으로써 개발된 프로그램이 고온구조물의 건전성 평가를 위한 비탄성 해석에 적절하게 적용될 수 있음을 확인하였다.

  • PDF