• Title/Summary/Keyword: 평면트러스

Search Result 35, Processing Time 0.019 seconds

Optimization of the Truss Structures Using Member Stress Approximate method (응력근사해법(應力近似解法)을 이용한 평면(平面)트러스구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;You, Hee Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.73-84
    • /
    • 1993
  • In this research, configuration design optimization of plane truss structure has been tested by using decomposition technique. In the first level, the problem of transferring the nonlinear programming problem to linear programming problem has been effectively solved and the number of the structural analysis necessary for doing the sensitivity analysis can be decreased by developing stress constraint into member stress approximation according to the design space approach which has been proved to be efficient to the sensitivity analysis. And the weight function has been adopted as cost function in order to minimize structures. For the design constraint, allowable stress, buckling stress, displacement constraint under multi-condition and upper and lower constraints of the design variable are considered. In the second level, the nodal point coordinates of the truss structure are used as coordinating variable and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, unconstrained optimal design problems are easy to solve. The decomposition method which optimize the section areas in the first level and optimize configuration variables in the second level was applied to the plane truss structures. The numerical comparisons with results which are obtained from numerical test for several truss structures with various shapes and any design criteria show that convergence rate is very fast regardless of constraint types and configuration of truss structures. And the optimal configuration of the truss structures obtained in this study is almost the identical one from other results. The total weight couldbe decreased by 5.4% - 15.4% when optimal configuration was accomplished, though there is some difference.

  • PDF

A Study on the Formation and Characteristics of the Wooden Church Architecture in Andong Area (안동지역(安東地域) 목조교회건축(木造敎會建築)의 형성(形成)과 특성(特性))

  • Kim, Soo-Jin;Dho, Sun-Boong;Han, Kyu-Young
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.4 no.2
    • /
    • pp.39-48
    • /
    • 2002
  • The purpose of this study was to analyze and explain the formation and characteristics of wooden church architecture in Andong area from 1902 to 1975. Especially, I tried to find out the characteristic of wooden construction and the influence of typical form of Andong church architecture to the small church of nearby Andong rural area. This study was carried out the actual inspection of existing architecture through analysis.

  • PDF

Shape & Topology Optimum Design of Truss Structures Using Genetic Algorithms (유전자 알고리즘에 의한 평면 및 입체 트러스의 형상 및 위상최적설계)

  • Yuh, Baeg-Youh;Park, Choon-Wook;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.93-102
    • /
    • 2002
  • The objective of this study is the development of size, shape and topology discrete optimum design algorithm which is based on the genetic algorithms. The algorithm can perform both shape and topology optimum designs of trusses. The developed algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of trusses and the constraints are stress and displacement. The basic search method for the optimum design is the genetic algorithms. The algorithm is known to be very efficient for the discrete optimization. The genetic algorithm consists of genetic process and evolutionary process. The genetic process selects the next design points based on the survivability of the current design points. The evolutionary process evaluates the survivability of the design points selected from the genetic process. The efficiency and validity of the developed size, shape and topology discrete optimum design algorithms were verified by applying the algorithm to optimum design examples

  • PDF

Decomposition of Shear Resistance Components in Reinforced Concrete Beams (철근콘크리트 보의 전단저항 성분 분해)

  • Rhee, Chang-Shin;Shin, Geun-Ok;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.819-825
    • /
    • 2006
  • The objective of the present study is to verify the validity of a new truss model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. The new truss model is based on the relationship between shear and bending moment in a beam subjected to combined shear and bending. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. On the basis of the analytical results, the contribution by the web to shear resistance can be constant and have an excellent linear correlation with the web reinforcement ratio. The present decoupling approach may provide a simple way for the assessment of the role of each parameter or mechanism that affects the ultimate shear behavior of reinforced concrete beams.

A Study on Improvement of Genetic Algorithm Operation Using the Restarting Strategy (재시동 조건을 이용한 유전자 알고리즘의 성능향상에 관한 연구)

  • 최정묵;이진식;임오강
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.2
    • /
    • pp.305-313
    • /
    • 2002
  • The genetic algorithm(GA), an optimization technique based on the theory of natural selection, has proven to be relatively robust means to search for global optimum. It is converged near to the global optimum point without auxiliary information such as differentiation of function. When studying some optimization problems with continuous variables, it was found that premature saturation was reached that is no further improvement in the object function could be found over a set of iterations. Also, the general GA oscillates in the region of the new global optimum point so that the speed of convergence is decreased. This paper is to propose the concept of restarting and elitist preserving strategy as a measure to overcome this difficulty. Some benchmark examples are studied involving 3-bar truss and cantilever beam with plane stress elements. The modifications to GA improve the speed of convergence.

A Study on the Optimized Design of Structures Considering Reliability Analysis (신뢰성을 고려한 구조물의 최적설계에 관한 연구)

  • Park, Hyun-Jung;Shin, Soo-Mi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.4
    • /
    • pp.217-224
    • /
    • 2003
  • The objective of this paper is to suggest the technique of program to perform structural optimization design after reliability analysis to consider the uncertainties of structural reponses. AFOSM method is used for reliability analysis then, structural optimization design is developed for 10-bar truss and 3 span 10 stories planar frame model is subject to reliability indices and probability of failure by reliability analysis. SQP method is used for optimization design method, this method has many attractions. As a result of analyzing with having and not having constraints and uncertainty, the minimum weight of truss and planar frame increased respectively 20.92% and average 8.08%.

A Computer Graphics Program for 2-Dimensional Strut-tie Model Design of Concrete Members (콘크리트 구조부재의 2차원 스트럿-타이 모델 설계를 위한 컴퓨터 그래픽 프로그램)

  • Yun, Young Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.531-539
    • /
    • 2017
  • The strut-tie model approach has been recognized as an efficient methodology for the design of all types of concrete members with D-regions, and the approach has been accepted in design codes globally. However, the design of concrete members with the approach requires many iterative numerical structural analyses, numerous graphical calculations, enormous times and efforts, and designer's subjective decisions in terms of the development of appropriate strut-tie model, determination of required areas of struts and ties, and verification of strength conditions of struts and nodal zones. In this study, a computer graphics program, that enables the design of concrete members efficiently and professionally by overcoming the forementioned limitations of the strut-tie model approach, is developed. In the computer graphics program, the numerical programs that are essential in the strut-tie model analysis and design of concrete members including finite element analysis programs for the plane truss and solid problems with all kinds of boundary conditions, a program for automatic determination of effective strengths of struts and nodal zones, and a program for graphical verification of developed strut-tie model's appropriateness by displaying various geometrical shapes of struts and nodal zones, are loaded. Great efficiency and convenience during the application of the strut-tie model approach may be provided by the various graphics environment-based functions of the proposed program.

Member Sizing Method in IsoTruss® Grid High-rise Building Structures Based on Stiffness Criteria (강성도 기준에 따른 IsoTruss® 그리드 고층건물의 부재선정 방법)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.50-56
    • /
    • 2017
  • The perimeter structure in high-rise buildings, which plays a major role in resisting lateral forces, is generally formed by the orthogonal placement of the beam and column, but currently various grid patterns are implemented. In a previous study, the adaptability of the $IsoTruss^{(R)}$ grid (ITG) as a perimeter structure was examined. In this study, a method of estimating the required cross sectional area of a member in a preliminary design is proposed. The members of the perimeter structure are placed in three planes, perpendicular (PPR), parallel (PPL) and oblique (POQ) to the lateral loading, and the stiffness of the members in the POQ was taken into account by projecting them onto the PPL or PPR. Three models are established for member size zoning through the height of the building, in order to investigate the effect of the shear and moment in the calculation of the required cross sectional area. To examine the effectiveness of this study, a 64-story building is designed and analyzed. The effect of the member size zoning was examined by comparing the maximum lateral displacement, required steel amount, and axial strength ratio of the columns. Judging from the maximum lateral displacement, which was 97.3% of the allowable limit, the proposed formula seems to be implemental in sizing the members of an ITG structure at the initial stage of member selection.

Optimal Configuration of the Truss Structures by Using Decomposition Method of Three-Phases (3단계(段階) 분할기법(分割技法)에 의한 평면(平面)트러스 구조물(構造物)의 형상(形狀) 최적화(最適化)에 관한 연구(硏究))

  • Lee, Gyu Won;Song, Gi Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.39-55
    • /
    • 1992
  • In this research, a Three Level Decomposition technique has been developed for configuration design optimization of truss structures. In the first level, as design variables, behavior variables are used and the strain energy has been treated as the cost function to be maximized so that the truss structure can absorb maximum energy. For design constraint of the optimal design problem, allowable stress, buckling stress, and displacement under multi-loading conditions are considered. In the second level, design problem is formulated using the cross-sectional area as the design variable and the weight of the truss structure as the cost function. As for the design constraint, the equilibrium equation with the optimal displacement obtained in the first level is used. In the third level, the nodal point coordinates of the truss structure are used as coordinating variable and the weight has been taken as the cost function. An advantage of the Three Level Decomposition technique is that the first and second level design problems are simple because they are linear programming problems. Moreover, the method is efficient because it is not necessary to carry out time consuming structural analysis and techniques for sensitivity analysis during the design optimization process. By treating the nodal point coordinates as design variables, the third level becomes unconstrained optimal design problems which is easier to solve. Moreover, by using different convergence criteria at each level of design problem, improved convergence can be obtained. The proposed technique has been tested using four different truss structures to yield almost identical optimum designs in the literature with efficient convergence rate regardless of constraint types and configuration of truss structures.

  • PDF

A Development of Analytical Strategies for Elastic Bifurcation Buckling of the Spatial Structures (공간구조물의 탄성 분기좌굴해석을 위한 수치해석 이론 개발)

  • Lee, Kyung Soo;Han, Sang Eul
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.563-574
    • /
    • 2009
  • This paper briefly describes the fundamental strategies--path-tracing, pin-pointing, and path-switching--in the computational elastic bifurcation theory of geometrically non-linear single-load-parameter conservative elastic spatial structures. The stability points in the non-linear elasticity may be classified into limit points and bifurcation points. For the limit points, the path tracing scheme that successively computes the regular equilibrium points on the equilibrium path, and the pinpointing scheme that precisely locates the singular equilibrium points were sufficient for the computational stability analysis. For the bifurcation points, however, a specific procedure for path-switching was also necessary to detect the branching paths to be traced in the post-buckling region. After the introduction, a general theory of elastic stability based on the energy concept was given. Then path tracing, an indirect method of detecting multiple bifurcation points, and path switching strategies were described. Next, some numerical examples of bifurcation analysis were carried out for a trussed stardome, and a pin-supported plane circular arch was described. Finally, concluding remarks were given.