본 연구는 미측정점의 값을 모델링하기 위해 사용되는 여러 가지 공간보간방법들의 예측오차를 비교하고 정확성을 검증하였다. 동해안 해안 지역의 표고점을 대상으로 역거리가중법, 크리깅, 지역 다항식보간법, 방사기반함수의 공간보간법과 관련된 매개변수들을 동일한 조건하에서 실행하여 평균제곱근을 산출한 결과, 단순 크리깅 방법의 원형 모델이 가장 작은 값으로 나타났다. 래스터의 연산 결과, 방사기반함수의 다중방정식에 의한 예측 지도가 대상 지역의 불규칙삼각망 표현과 일치정도가 높았다. 또한 공간보간 실행시 선택된 조건하에서 제공되는 최적 파워값을 사용하는 것이 양호한 보간 결과를 얻을 수 있다.
본 연구에서는 준 2차원 수치모형인 GSTARS를 이용하여 형산강의 하상변동모의에 적합한 최적 유사량공식을 산정하고자 하였다. 모형의 검보정을 위한 유사량, 하상재료 및 하천지형자료를 현장조사를 통해 취득하였다. 현재까지 널리 적용되는 유사량 공식들에 대하여 장기하상변동 모의결과의 실측치에 대한 평균오차, 상대오차, 평균제곱오차, 상대제곱근오차, 불일치율, 그리고 Nash-Sutcliffe 효율계수를 비교한 결과, Laursen(1958)공식이 형산강의 장기하상 변동을 모의하기 위한 가장 적합한 유사량공식으로 판단되었다.
본 논문은 Newton-Raphson 방법을 기반으로 하는 table-driven 알고리듬에 대해 연구되었다. 특히 본 논문에서는 Newton-Raphson 방법을 이용한 제곱근 근사에 중점을 두었다. Newton-Raphson방법에서 최적화된 초기근사해를 구하게 되면 제곱근 근사의 정확성을 높일 수 있으며, 연산 속도 또한 빨라지게 된다. 그러므로 Newton-Raphson 알고리듬에서 초기근사해를 어떻게 결정하느냐하는 것이 전체적인 알고리듬의 성능을 평가하게 되는 중요한 이슈이다. 본 논문에서는 Newton-Raphson 알고리듬의 초기 근사해를 기하평균을 기준으로 테이블에 저장, 연산의 속도와 최대 오차율을 줄일 수 있음을 확인하였다.
국내 코로나19의 감염자 수가 백신과 사회적 거리 두기, 백신 등 여러 가지 노력 덕분에 차츰 줄어드는 듯 보였으나 2020년 2월 20일 특정한 사건 이후 감염자 수가 증가한 것처럼, 2020년 12월부터 또다시 급격히 감염자 수가 증가하는 추세이며 꾸준히 일일 500명가량의 감염자 수가 이어지고 있다. 따라서 Kaggle의 데이터셋을 이용해서 Prophet 알고리즘을 통해 미래 코로나19를 예측하고 사이킷런을 통해 결정계수, 평균 절대 오차, 평균 백분율 오차, 평균 제곱 차, 평균 제곱근 편차를 통해 이 예측에 대한 설명력을 더한다. 또한 코로나19가 급격히 특정한 사건이 없었을 경우 국내 감염자 수를 예측해 앞으로 우리가 미래의 질병에 대해서 방역과 방역 수칙 실천의 중요함을 강조한다.
본 연구에서는 고해상도의 IKONOS panchromatic 영상과 multispectral 영상을 IHS와 PCA 방법으로 중합하고 그 결과를 비교하였다. 평가에 있어서는 중합된 영상들과 원영상간의 필셀 값에 대한 평균제곱근오차를 구하고 그 결과를 분석하였다. 분석 결과, multispectral band 1, 3, 4를 사용하는 IHS 방법, multispectral band 1, 2, 4를 사용하는 IHS 방법 및 multispectral band 1, 3, 4를 사용하는 PCA 방법이 원영상의 특성을 잘 보존하는 것으로 평가되었다.
본 연구에서는 의사결정나무(CART)기법, 인공신경망모형, 인공위성 원격탐사자료와 지형자료 및 지상 기상관측망자료를 이용하여 토양수분을 산정하는 모형을 개발하였다. 본 모형의 검증을 위하여 사용된 토양수분 관측자료는 용담댐 유역에서 관측된 5개 지점의 토양수분자료를 사용하였다. 가용자료에 대해 CART기법을 적용하여 자료를 분류한 다음 분류된 각 자료집단에 대하여 인공신경망(Artificial Neural Networks)모형을 적용하여 토양수분 분포를 예측하였다. 모형의 학습에 사용된 주천, 부귀, 상전, 안천 지점의 토양수분 산정치는 관측치와 약 0.92-0.96의 상관계수, 약 1.00-1.88%의 평균제곱근오차와 약 0.75-1.45%의 평균절대오차를 보여주었다. 토양수분 추정모형을 검증하기 위해 천천2의 지점에 적용한 결과 약 0.91의 상관계수, 약 3.19%의 평균제곱근오차, 약 2.72%의 평균절대오차를 보여 CART기법과 인공신경망모형을 연계한 토양수분 산정모형이 토양수분 분포제시 활용에 적절한 것으로 판단된다.
강우자료는 수문 모델링 작업에서 가장 기초적인 수문학적 입력자료로 시간과 공간에 따른 변동성이 크므로 규명하기 복잡한 수문현상 중의 하나이다. 산악지역이 많은 우리나라의 지형학적 특성과 태풍, 장마 및 특히, 최근의 게릴라성 집중호우 등으로 인하여 이러한 변동성이 더욱 커지고 있는 실정이다. 장기간 실측된 수문기상 기초 자료가 부족한 우리나라의 실정상 홍수예보 및 수공구조물 설계를 위해 정확한 강우량 자료의 취득이 선행돼야 한다. 따라서 적절한 장소에 수문관측소 설치 및 관리를 통해 양호한 강우량 자료를 획득해야 하지만, 현장 여건상 등의 이유로 미계측 및 결측, 이상자료가 발생하고 있다. 따라서 이러한 미계측 혹은 결측지점의 우량을 추정할 수 있는 방법을 비교, 분석하여 적절한 보정과정을 수행할 필요가 있다. 그간의 연구에서는 미계측 지점 혹은 산악지역에서의 점 강우량 보정방법에 대한 연구가 진행되었지만, 본 연구에서는 '도시홍수재해관리기술연구사업단'에서 운영 중인 도시하천 유역 특히 소배수구역에서의 결측 자료에 대해 여러 추정 방법을 비교, 분석하여 적절한 방안을 찾고자 한다. 이를 위하여 중랑천 유역의 3개 소배수 구역(월계1 배수구역, 군자 배수구역, 어린이대공원 배수구역)에 설치된 3개 우량관측소와 건설교통부 관할 우량관측소 2개소의 우량자료를 사용하였다. 본 연구에서는 결측치 보간을 위하여 널리 이용되고 있는 산술평균법(Arithmetic Average method), 역거리법(Reciprocal Distance Squared method), 거리고도비율법(Ratio of Distance and Elevation method), 인근관측소와의 관계식 이용, 크리깅방법(Simple Kriging method)을 비교, 검토 적용하였다. 중랑천 유역의 소배수구역을 대상으로 연중 발생하는 큰 호우사상에 대해 임의의 강우관측소를 결측지점으로 가정하고 주변의 강우관측소로부터 각각의 방법을 이용해 가중치들을 산정하여 결측지점의 강우량 값을 보정하고자 하였다. 또한 각각의 방법을 이용하여 얻어진 결과에 대해 실측값과 보정값의 오차정도를 평균절대오차법(Mean Absolute Error)과 제곱평균제곱근오차법(Root Mean Squared Error)에 의해 산정하여 보정 방법간의 효율성을 검토하고자 하였다.
최근, 컴퓨터 비전과 기계 학습 기술의 도움을 받아 효율적이고 자동적인 도시 환경에 대한 분석 방법의 개발에 대한 연구가 이루어지고 있다. 많은 분석들 중에서도 도시의 안전도 분석은 지역 사회의 많은 관심을 받고 있다. 더욱 정확한 안전도 점수 예측과 인간의 시각적 인지를 반영하기 위해서, 인간의 시각적 인지에서 가장 중요한 전역 정보와 지역 정보의 고려가 필요하다. 이를 위해 우리는 전역 칼럼과 지역 칼럼으로 구성된 Double-column Convolutional Neural Network를 사용한다. 전역 칼럼과 지역 칼럼 각각은 입력은 크기가 변환된 원 영상과 원 영상에서 무작위로 크로핑을 사용한다. 또한, 학습 과정에서 특정 칼럼에 오버피팅되는 문제를 해결하기 위한 새로운 학습방법을 제안한다. 우리의 DCNN 모델의 성능 비교를 위해 2개의 SVR 모델과 3개의 CNN 모델의 평균 제곱근 오차와 상관관계 분석을 측정하였다. 성능 비교 실험 결과 우리의 모델이 0.7432의 평균 제곱근 오차와 0.853/0.840 피어슨/스피어맨 상관 계수로 가장 좋은 성능을 보여주었다.
방사선 치료 전 환자 위치 확인을 위해 수행하는 콘빔 CT 촬영에서 환자 선량 감소를 위해 Sparse view CT가 사용되고 있다. 본 연구는 시뮬레이션과 실험을 통해 선형보간법과 inpainting 방법을 이용하여 사이노그램의 sparse 데이터 복원하고 평가하는 것이다. 사이노그램 복원은 여러 간격의 각도로 획득된 영상에 적용되었다. 복원된 사이노그램은 역투영재구성법으로 재구성되었고, 그 결과를 평균제곱근오차와 영상의 프로파일로 나타내었다. 결과에 따르면, 평균제곱근오차와 영상 프로파일은 투영 각도와 복원법에 의존하였다. 시뮬레이션과 실험 결과에서 inpainting 복원법은 선형보간법에 비해 사이노그램의 복원 측면에서 개선된 결과를 보여주었다. 따라서, inpainting 방법은 환자 선량을 감소시키면서 영상화질을 유지시키는데 기여할 수 있을 것이다.
본 연구에서는 지상관측 토양수분, 강수량, 지면온도 및 MODIS NDVI와 인공신경망모형을 이용하여 토양수분 공간분포 산정 모형을 제안하였으며, 신뢰성 높은 토양수분 관측 자료를 보유한 용담댐 유역에 대하여 모형의 적용성을 검증하였다. 토양수분 산정모형의 학습에 사용된 주천, 부귀, 상전의 3개 지점의 경우 약 0.9353의 상관계수와 약 1.4957%의 평균제곱근오차를 보여주며, 검증지점으로 사용된 천천2의 경우에는 약 0.8215의 상관계수와 약 4.2077%의 평균제곱근오차를 보여 토양수분 산정모형의 적용가능성이 높다고 판단된다. 인공위성으로부터 관측된 광역의 식생정보와 자료간의 비선형 상관특성을 잘 구현하는 인공신경망을 활용하여 수립된 토양수분 산정모형을 이용하여 용담댐 유역의 토양수분 공간분포도를 산정한 결과, 용담댐 유역의 대부분을 차지하고 있는 산림지역의 토양수분이 다른 지역에 비하여 높은 수치를 보여주는 토양수분의 분포를 보여주었다. 본 연구를 통해 제시된 토양수분 산정 방법은 광역 토양수분 산정에 유용한 접근법으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.