• Title/Summary/Keyword: 평균 변형에너지

Search Result 64, Processing Time 0.026 seconds

Improvement of Seismic Performance Evaluation Method for Concrete Dam Pier by Applying Maximum Credible Earthquake(MCE) (가능최대지진(MCE)을 적용한 콘크리트 댐 피어부 내진성능평가 방안 개선)

  • Jeong-Keun Oh;Yeong-Seok Jeong;Min-Ho Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.1-12
    • /
    • 2023
  • This paper assesses the suitability of existing standards for plastic material models and performance level evaluation methods in seismic performance evaluations of concrete dam piers during Maximum Credible Earthquakes (MCE). Dynamic plastic analysis was conducted to examine the applicability of the plastic material model under various conditions. As a result reveal that when the minimum reinforcement ratio is not met, the average stress-average strain method recommended in current dam seismic performance evaluation guidelines tends to underestimate pier responses compared to the predicted outcomes of dynamic elastic analysis. Consequently, the paper proposes an improvement plan that treats dam piers with an insufficient minimum reinforcement ratio as unreinforced and integrates fracture energy into concrete tensile behavior characteristics for performance level evaluation. Implementing these improvements can lead to more conservative evaluation outcomes compared to current seismic performance evaluation methods.

The Analysis of Related Variables on the Center of Gravity Deviation: Focus on the Musculoskeletal Pain (중력중심 이동과 관련 변인분석 -근골격계 통증을 중심으로-)

  • Ko, Tae-Sung;Joung, Ho-Bal
    • Physical Therapy Korea
    • /
    • v.10 no.4
    • /
    • pp.85-94
    • /
    • 2003
  • 본 연구에서는 근골격계 통증이 자세유지와 균형능력에 핵심이 되는 중력중심 이동에 미치는 영향에 대해 알아봄으로서, 균형과 자세에 영향을 주는 다양한 요소들에 대한 새로운 접근을 시도해 보고자 한다. I-병원의 입원 및 외래 환자 중 신경계 손상이 없고 중력중심 이동에 직접적인 영향을 줄 수 있는 하지에 정형외과적 장애가 없으며, 전정계 손상이나 시력장애로 인한 균형에 문제가 없이 근골격계 질환으로 요통과 견통을 주소로 하는 71명의 환자(남자 38, 여자 33; 평균연령=44, 표준편차=13.8, 범위=19~79)와 신경계, 근골격계 및 평형감각에 문제가 없는 정상인 30명의 대조군(남자 16, 여자 14; 평균연령=39.2, 표준편차=13.7, 범위=21~72)을 대상으로 전산화된 힘판을 이용하여 중력중심 이동의 궤적을 표준편차값으로 측정하였다. 측정된 중력중심 이동값은 두 군간에 상이한 차이를 보이고 있음이 검증되었다(p<.01). 또 측정된 여러 변수들의 중력중심 이동에 대한 영향력을 알아보기 위해 나이, 체중 및 신장과 중력중심 이동과의 상관분석 결과 중력중심 이동의 15.8%를 체중의 변화에 의한 것으로 설명할 수 있다는 결과를 얻었으며, 그 외의 변수들과의 연관성에 대해선 유의미한 차이가 없었다(p<.01). 결과적으로 근골격계 통증은 올바른 자세유지와 균형유지를 위한 감각통합과 반응과정에 직접, 간접적으로 영향을 미치고 있다. 따라서 중력 중심 이동이 크면 클수록 중심을 잡기 위한 근육활동으로 추가적인 에너지가 사용되고, 편중된 중력중심 이동은 근골격계에 무리한 부담을 주어 통증을 증가시킬 수 있을 것이다. 또 통증으로 인한 중력중심 이동은 이를 보상하기 위해 신체 먼 곳에서의 이차적인 변형을 초래하여 각종 근골격계 증상의 원인이 될 수 있으므로 근골격계에 대한 적절한 치료는 통증을 감소시켜 자세의 이차적인 변형을 막고 자세유지 시 작용하는 근육의 에너지 효율을 높일 수 있을 것으로 사료된다.

  • PDF

Estimation of Mechanical Representative Elementary Volume and Deformability for Cretaceous Granitic Rock Mass: A Case Study of the Gyeongsang Basin, Korea (경상분지 백악기 화강암 암반에 대한 역학적 REV 및 변형특성 추정사례)

  • Um, Jeong-Gi;Ryu, Seongjin
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.59-72
    • /
    • 2022
  • This study employed a 3-D numerical analysis based on the distinct element method to estimate the strength and deformability of a Cretaceous biotite granitic rock mass at Gijang, Busan, Korea. A workflow was proposed to evaluate the scale effect and the representative elementary volume (REV) of mechanical properties for fractured rock masses. Directional strength and deformability parameters such as block strength, deformation modulus, shear modulus, and bulk modulus were estimated for a discrete fracture network (DFN) in a cubic block the size of the REV. The size of the mechanical REV for fractured rock masses in the study area was determined to be a 15 m cube. The mean block strength and mean deformation modulus of the DFN cube block were found to be 52.8% and 57.7% of the intact rock's strength and Young's modulus, respectively. A constitutive model was derived for the study area that describes the linear-elastic and orthotropic mechanical behavior of the rock mass. The model is expected to help evaluate the stability of tunnels and underground spaces through equivalent continuum analysis.

Investigation of Turbulence Structures and Development Turbulence Model Based upon a Higher Order Averaging Method (고차평균법에 의한 난류구조의 규명 및 난류모델의 개발)

  • 여운광;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.4
    • /
    • pp.201-207
    • /
    • 1992
  • The averaged non-linear term in the turbulence equations, suggested by Yeo (1987), is analyzed theoretically and experimentally. It was formulated by applying the filtering concepts to the convolution integral average definition with the Gaussian response function. This filtering approach seems to be superior to the conventional averaging methods in which all four terms at the doubly average vol must be defined separately, and it also gives a very useful tool in understanding the turbulence structures. By theoretically analyzing the newly derived description for the averaged non-linear terms, it is found that the vortex stretching can be explicitly accounted for. Furthermore, comparisons of the correlation coefficients based on the experimental data show that the vortex stretching acts most significantly on the turbulence residual stress. Thus, it strongly supports the claim that the vortex stretching is essential in the transfer of turbulence. In addition. a general form of turbulent energy models in LES is derived, by which it is recognized that the Smagorinsky, the vorticity and the SGS energy models are not distinctive.

  • PDF

Characteristics of Wave Breaker and Longshore Current in the Surf Zone (쇄파특성과 쇄파대내의 연안류)

  • 김경호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.2
    • /
    • pp.65-71
    • /
    • 1991
  • Many investigations of wave deformation without currents have been carried out experimentally and theoretically but, studies treating the effect of longshore current on the wave deformation are few. It is thus necessary to evaluate the effect of longshore current on the wave deformation after breaking. In the paper the wave height attenuation. the wave direction and the variation of mean water level are calculated in which effects of longshore current are involved. To assess the effect of longshore current on the wave deformation, factors above with longshore current are compared with them without longshore current by using calculated results.

  • PDF

Characteristics of specific grinding energy depending on grain size (연삭입자크기에 따른 비연삭에너지 특성)

  • Lee H.G.;Lee Y.M.;Yang S.H.;Bae D.W.;Kim H.K.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.319-323
    • /
    • 2005
  • As a new approach to analyze grinding energy, this paper introduces a specific grinding energy model based on the average grain. Using this model, grinding characteristics such as specific grinding energy of SM45C were investigated with changing variables such as grain size, workpiece velocity(v) and apparent depth of cut(Z) in down-surface grinding. From the experimental results, the specific grinding energy decreases as the maximum undeformed chip thickness increases. And also the specific grinding energy increases as the grit size increases.

  • PDF

Characteristics of specific grinding energy depending on grain sire of CBN (CBN 연삭입자 크기에 따른 비연삭에너지 특성)

  • Lee Y.M.;Bae D.W.;Lee H.G.;Jang J.H.;Hwang K.S.;Son S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.1004-1007
    • /
    • 2005
  • As a new approach to analyze grinding energy, this paper introduces a specific grinding energy model based on the average grain. Using this model, grinding characteristics such as specific grinding energy of SM45C were investigated with changing variables such as grain size of CBN, workpiece velocity(v) and apparent depth of cut(Z) in down-surface grinding. From the experimental results, the specific grinding energy decreases as the maximum undeformed chip thickness increases.

  • PDF

Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior (히스테리시스 거동을 하는 탄성체의 비선형 점탄성 구성방정식)

  • Yoo, Sairom;Ju, Jaehyung;Choi, Seok-Ju;Kim, Dooman
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2016
  • An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20~80%, and frequencies of 0.02~0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

Energy Absorption Characteristics and Optimal Welding Space of Square Hat Type Thin-walled Tube (정사각 모자형 박판튜브의 에너지흡수특성 및 최적 용접간격)

  • Lee, Hyung-Yil;Kim, Bum-Joon;Han, Byoung-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.12
    • /
    • pp.2703-2714
    • /
    • 2002
  • In this work, energy absorption characteristics and optimal welding space of spot-welded square hat type tube are investigated via quasi-static crush experiments and finite element (FE) analyses. A FE model reflecting the crush characteristics is established based on the experimentally observed crush mechanisms of specimens with welding spaces (20, 30 & 45 mm) and (25,40 & 55 mm) respectively for two specimen widths (60, 75 mm). The established FE model is then applied to other crush models of widths (50, 60 & 75 mm) with various welding spaces (20, 25, 30, 40, 45, 55, 75, 150, 300 mm) respectively. We examine the energy absorption characteristics with respect to the welding space for each specimen width. The outcome suggests an optimal spot welding space of square hat type thin-walled tube. Energy absorption is also presented in terms of yield strength of base metal, specimen thickness, width, and mean crushing force of spot-welded square hat type thin-walled tube.

Dynamic Fracture Behaviors of Concrete Three-Point Bend Specimens (콘크리트 삼점휨 시험편의 동적 파괴거동)

  • 연정흠
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.689-697
    • /
    • 2002
  • The dynamic loads and load-point displacements of concrete three-point bend (TPB) specimens had been measured. The average crack velocities measured with strain gages were 0.16 ㎜/sec ∼ 66 m/sec. The fracture energy for crack extension was determined from the difference of the kinetic energy for the load-point velocity and the strain energy without permanent deformation from the measure external work. For all crack velocities, there were micro-cracking for 23 ㎜ crack extension, stable cracking for 61 ㎜ crack extension at the maximum strain energy, and then unstable cracking. The unstable crack extension was arrested at 80 ㎜ crack extension except the tests of 66 m/sec crack velocity. The tests less than 13 ㎜/sec crack velocity and faster than 1.9 m/sec showed static and dynamic fracture behaviors, respectively. In spite of much difference of the load and load-point displacement relations for the crack velocities, the crack velocities of dynamic tests did not affect on fracture energy rate during the stable crack extension due to the reciprocal action of kinetic force, crack extension and strain energy. During stable crack extension, the maximum fracture resistances of the dynamic tests was 147% larger than that of the static tests.