• Title/Summary/Keyword: 평균하천경사

Search Result 174, Processing Time 0.046 seconds

Case Study of Fault Based on Drainage System Analysis in the Namdae Stream, Uljin Area (울진 남대천 유역의 수계분석을 통한 단층 규명 사례 연구)

  • Han, Jong-Gyu;Choi, Sung-Ja
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.399-412
    • /
    • 2011
  • A DEM (digital elevation model) is produced using a digital topographic map and is now a commonly used tool in geologic surveys. This study aimed to clarify the relationship between knickpoints and faults in the Namdae stream by analyzing a DEM of the area. The Namdae drainage basin was divided into three subbasins (S1, S2 and S3) and their knickpoints developed for the middle to mid-upper regions were extracted from the DEM. The relative steepness Ks and concavity depending on the incision rate was higher in S1 than in S2 and S3 regions. We assumed that the incision rate caused by active erosion resulted from several faults crossing the basins rather than differences in rock types. There are 77 knickpoints in the Namdae drainage area, including the low-ranking branch, and 24 of thses are on the main river system (S1, S2, S3). Of these 77 knickpoints, 27 (38%) are matched by faults, and from the three basins, 13 (54%) correspond with faults, indicating that the knickpoints are connected closely with the faults. For example the average Ks (relative steepness), was 38.8, but in the overlapping area of the Samdang and Doocheon faults the Ks value was 42.99~43.39. We suggest that the faults resulted in geomorphic deformation such as the high-Ksn knickpoints. There was little evdence of relationship between the knickpoints and rock boundaries, with 54% of the knickpoints distributed on the S1, S2, and S3 subbasins. We concluded that the drainage basin knickpoints are the result of fault movement and are a type of geomorphologic deformation that could be useful for surveying Quaternary faults or fault extension.

Habitats Environmental and Population Characteristics of Cypripedium japonicum Thunb., a Rare Species in Korea (희귀식물 광릉요강꽃 자생지 환경 및 개체군 특성)

  • Pi, Jung-Hun;Jung, Ji-Young;Park, Jeong-Geun;Yang, Hyung-Ho;Kim, Eun-Hye;Suh, Gang-Uk;Lee, Cheul-Ho;Son, Sung-Won
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.4
    • /
    • pp.253-262
    • /
    • 2015
  • The sustainability of Cypripedium japonicum, a rare plant designated by the Korea Forest Service, is threatened due to artificial factors such as habitat loss and climate change etc. and internal factors such as changes in biological properties of the habitat etc. but conservation research has not been performed in South Korea. The objective of this study is to establish the species conservation strategies by analyzing the characteristics of their habitats, including: 1) Population characteristics, and 2) habitat analysis of the vegetation and abiotic environments. From April to September, 2014, population characteristics [density (stems $m^{-2}$), flowering rate (%), and leaf area ($cm^2$)] in Cypripedium japonicum habitats such as Chuncheon (CC), Hwacheon (HC), Muju (MJ), and Gwangyang (GY) and vegetation characteristics (plant sociological research and ordination analysis), and abiotic environments [temperature ($^{\circ}C$), relative humidity (%), transmitted light ($mol{\cdot}m^{-2}{\cdot}d^{-1}$) and canopy openness (%)] were measured. Cypripedium japonicum was mainly distributed at elevation 450 to 990 m and 5 to $30^{\circ}$ slope. Slope direction was shown as 0 to $110^{\circ}$. Habitats temperature (mean $18.94^{\circ}C$) was well matched to seasonal changes. Differences among sites showed greater level according to latitude difference. It showed the highest in habitat, GY located in the South. On the other hand, relative humidity (77.38%) didn't show much difference among sites. The average degree of canopy openness was 18.17%. It showed the highest at HC (22.1%) and the lowest at MJ (16.1%). The average degree of transmitted light was $9.1mol{\cdot}m^{-2}{\cdot}d^{-1}$. It showed the highest at CC ($10.6mol{\cdot}m^{-2}{\cdot}d^{-1}$) and the lowest at GY ($6.87mol{\cdot}m^{-2}{\cdot}d^{-1}$). Chlorophyll content showed average 26.12 SPAD. It showed the highest at MJ (30.64 SPAD value) and the lowest at HC (23.69 SPAD value). Leaf area was average $253.35cm^2$. It showed the highest at CC ($281.51cm^2$) and the lowest at HC ($238.23cm^2$).

Generality and Specificity of Landforms of the Korean Peninsula, and Its Sustainability (한반도 지형의 일반성과 특수성, 그리고 지속가능성)

  • Park, Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.5
    • /
    • pp.656-674
    • /
    • 2014
  • The objective of this study was to examine the distinctiveness and generality of landforms of the Korean peninsula, and further discover geomorphological principle that can be applied to land and environmental management in Korea. The research targeted East Asia and Korea, with terrain analysis conducted at a continental scale, national scale, and regional scale sequentially. East Asia displays complicated characteristics and evolutionary history of geotectonics, but exhibits distinct northeast-southwest geomorphological structure and connectivity at the continental level. While the Korean peninsula follows this pattern on a continental scale, it also features NNW-SSE direction (Nangrim and Taebaek Mountains) geomorphological connectivity that intersects at a right angle. From a national perspective, the Korean peninsula hosts the most diverse geomorphological features within East Asia. It does not have a high average altitude, but has relatively high slope angle and intricate topographical distribution in comparison to neighboring areas. While the mountains and plains of the Korean peninsula display a smooth connection, geomorphologically similar areas such as Shikhote-Alin, Huanan in China, and Japan have clear characteristics that divide the mountains and plains. Despite the distinctiveness and diversity that appear in East Asian topography on the regional scale, the connectivity that links the top of mountain (hill) to stream is identical among all areas as a general rule. It is collectively considering the connectivity and the geomorphological and ecological processes that arise within this connectivity that will serve as the focal point for sustainable landscape management.

  • PDF

Community Fluctuation of the Benthic Macroinvertebrates before and after the Construction of Nakdan Weir (낙동강 본류 낙단보 설치 전후의 저서성 대형무척추동물 군집변동)

  • Lee, Mi Jin;Seo, Eul Won;Yu, Jae Jeong;Lee, Jong Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.328-336
    • /
    • 2014
  • Nakdan weir, which is located in the second weir among the 8 weirs of Nakdong River, had been constructed from Nov. 2009 to Nov. 2011. To analyze the effect of Nakdan weir construction on benthic macroinvertebrates, we studied 2 sites around Nakdan weir (upstream and downstream) from 2007 to 2014. The average numbers of species and individuals were decreased after the construction (in 2012~2014, 51 species $895inds.\;m^{-2}$) than before construction (in 2007~2009, 25 species $84inds.\;m^{-2}$), especially in upstream site of Nakdan weir. After the construction, especially in 2012, dominance indices (DI) were increased by the decline of some specific taxon population, such as Ephemeroptera and Trichoptera, etc. After construction, individual ratios of GC (Gathering Collectors) and P (Predator) of FFGs (Functional feeding groups) and BU (Burrowers) of HOGs (Habitat orientation groups) were higher than before construction. So the results of this study indicate that the changes by a weir construction, such as the decline of shallow depth area, reduced velocity of water flow and increased ratio of sand bed, etc., can affect the benthic macroinvertebrate communities variously.

A Study on the application of Critical Rainfall Duration for the Estimation of Design Flood (설계홍수량 산정에 따른 임계지속시간의 적용성에 관한 연구)

  • Chang, Seong Mo;Kang, In Joo;Lee, Eun Tae
    • Journal of Wetlands Research
    • /
    • v.6 no.3
    • /
    • pp.119-126
    • /
    • 2004
  • In recent, the critical rainfall duration concept is widely used but we do not have understandable criteria yet. However, the critical rainfall duration is usually calculated considering concentration time, runoff model using effective rainfall, and unit hydrograph for the estimation of design flood. This study is to derive the regression equations between the critical rainfall duration and hydrologic components such as the basin area, slope, length, CN, and so on. We use a GIS tool which is called the ArcView for the estimation of hydrologic components and the HEC-1 module which is provided in WMS model is used for the runoff computation. As the results, the basin area, basin slope, and basin length had a great influence on the estimations of peak runoff and critical rainfall duration. We also investigated the sensitivities for the peak runoff and critical duration of rainfall from the correlation analysis for the involved components in the runoff estimation.

  • PDF

An Experimental Study on the Variation of Hydraulic Characteristics due to Vegetation in Open Channel (개수로에서 식생에 의한 수리특성 변화에 관한 실험적 연구)

  • Lee, Joon-Ho;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.3
    • /
    • pp.265-276
    • /
    • 2007
  • An understanding of the hydraulic characteristics in the compound channel with vegetation is important in designing stream restorations or managing the floodplain. A laboratory flume of 16 m long and 0.8 m wide was used for analysis of the hydraulic characteristics in the single section channel and the compound channel with artificial vegetation. Slope of experimental channel is 0.5 %. Discharges are ranged from $0.2\;m^3/s\;to\;$0.4\;m^3/s$. The experiments were done by changing water depth ratio, vegetation density and vegetation location. When water depth ratio in the single section channel with vegetation increase up to 3.5, the results showed that the increment of water depth due to vegetation may be ignored in practice. The maximum increment of water depth was measured up to 6 % in the compound channel with vegetation and the range of velocities increment in the low flow channel was from 25 % to 85 % compared with section average velocities. As the vegetation densities increase and water depth ratios decrease, the velocity of the low flow channel increased. The range of roughness coefficients in the vegetated reaches were estimated from 0.055 to 0.14 in the single section channel and from 0.063 to 0.085 in the compound channel using HEC-RAS and RMA-2 model.

An Estimation of Flood Quantiles at Ungauged Locations by Index Flood Frequency Curves (지표홍수 빈도곡선의 개발에 의한 미 계측지점의 확률 홍수량 추정)

  • Yoon, Yong-Nam;Shin, Chang-Kun;Jang, Su-Hyung
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The study shows the possible use of the index flood frequency curves for an estimation of flood quantiles at ungauged locations. Flood frequency analysis were made for the annual maximum flood data series at 9 available stations in the Han river basin. From the flood frquency curve at each station the mean annual flood of 2.33-year return period was determined and the ratios of the flood magnitude of various return period to the mean annual flood at each station were averaged throughout the Han river basin, resulting mean flood ratios of different return periods. A correlation analysis was made between the mean annual flood and physiographic parameters of the watersheds i.e, the watershed area and mean river channel slope, resulting an empirical multiple linear regression equation over the whole Han river basin. For unguaged watershed the flood of a specified return period could be estimated by multiplying the mead flood ratio corresponding the return period with the mean annual flood computed by the empirical formula developed in terms of the watershed area and river channel slope. To verify the applicability of the methodology developed in the present study the floods of various return periods determined for the watershed in the river channel improvement plan formulation by the Ministry of Construction and Transportation(MOCT) were compared with those estimated by the present method. The result proved a resonable agreement up to the watershed area of approximately 2,000k $m^2$. It is suggested that the practice of design flood estimation based on the rainfall-runoff analysis might have to be reevaluated because it involves too much uncertainties in the hydrologic data and rainfall-runoff model calibration.

Spatial Variation in Land Use and Topographic Effects on Water Quality at the Geum River Watershed (토지이용과 지형이 수질에 미치는 영향의 공간적 변동성에 관한 연구 - 금강 권역을 중심으로)

  • Park, Se-Rin;Choi, Kwan-Mo;Lee, Sang-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.94-104
    • /
    • 2019
  • In this study, we investigated the spatial variation in land use and topographic effects on water quality at the Geum river watershed in South Korea, using the ordinary least squares(OLS) and geographically weighted regression (GWR) models. Understanding the complex interactions between land use, slope, elevation, and water quality is essential for water pollution control and watershed management. We monitored four water quality indicators -total phosphorus, total nitrogen, biochemical oxygen demand, and dissolved oxygen levels - across three land use types (urban, agricultural, and forested) and two topographic features (elevation and mean slope). Results from GWR modeling revealed that land use and topography did not affect water quality consistently through space, but instead exhibited substantial spatial non-stationarity. The GWR model performed better than the OLS model as it produced a higher adjusted $R^2$ value. Spatial variation in interactions among variables could be visualized by mapping $R^2$ values from the GWR model at fine spatial resolution. Using the GWR model, we were able to identify local pollution sources, determine habitat status, and recommend appropriate land-use planning policies for watershed management.

Characteristics of Natural Habitats of Rare Species, Tofieldia nuda (희귀식물 꽃장포의 생육환경 특성)

  • Kwon, Soonsik;Hwang, In-Soo;Park, Wan-Gun;Cheong, Eun Ju
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.86-106
    • /
    • 2019
  • We investigated the environmental conditions of natural habitats of T. nuda. The species was found on rocky northern hills ($60{\sim}90^{\circ}$) near the stream where the sea level ranges 95~145m. The average annual temperature of the habitats was lower than other places of South Korea. The differences of the lowest and the highest of the year was significantly huge than any other places. Plants were growing at the edge of stream that water reached but not submerged. Most of plants were found in North, Northeast or Northwest. It is suggested that these species require moist and low sunlight for growth. The common vegetation along with the T. nuda includes Mukdenia rossii, Selaginella rossii, Calamagrostis epigeios, and Rhododendron yedoense f. poukhanense. The dominance values and sociability of T. nuda were below 3 in all studied habitats and the variance of the number of individuals among the habitats was very high. As the optimum habitats for the T. nuda are decreasing due to the extreme precipitation patterns. It is also expected that the number of T. nuda will be decreased in the future. Therefore restoration activity in situ or ex situ must be conducted to conserve this valuable plant species.

Estimation of Potential Risk and Numerical Simulations of Landslide Disaster based on UAV Photogrammetry (무인 항공사진측량 정보를 기반으로 한 산사태 수치해석 및 위험도 평가)

  • Choi, Jae Hee;Choi, Bong Jin;Kim, Nam Gyun;Lee, Chang Woo;Seo, Jun Pyo;Jun, Byong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.675-686
    • /
    • 2021
  • This study investigated the ground displacement occurring in a slope below a waste-rock dumping site and estimated the likelihood of a disaster due to a landslide. To start with, photogrammetry was conducted by unmanned aerial vehicles (UAVs) to investigate the size and extent of the ground displacement. From April 2019 to July 2020, the average error rate of the five UAV surveys was 0.011-0.034 m, and an elevation change of 2.97 m occurred due to the movement of the soil layer. Only some areas of the slope showedelevation change, and this was believed to be due to thegroundwater generated during rainfall rather than the effect of the waste-rock load at the top. Sensitivity analysis for LS-RAPID simulation was performed, and the simulation results were compared and analyzed by applying a digital elevation model (DEM) and a digital surface model (DSM)as terrain data with 10 m, 5 m, and 4 m grids. When data with high spatial resolution were used, the extent of the sedimentation of landslide material tended to be excessively expanded in the DEM. In contrast, in the result of applying a DSM, which reflects the topography in detail, the diffusion range was not significantly affected even when the spatial resolution was changed, and the sedimentation behavior according to the river shape could be accurately expressed. As a result, it was concluded that applying a DSM rather than a DEM does not significantly expand the sedimentation range, and results that reflect the site situation well can be obtained.