DOI QR코드

DOI QR Code

An Experimental Study on the Variation of Hydraulic Characteristics due to Vegetation in Open Channel

개수로에서 식생에 의한 수리특성 변화에 관한 실험적 연구

  • 이준호 (경기대학교 대학원 토목공학과) ;
  • 윤세의 (경기대학교 공과대학 토목공학과)
  • Published : 2007.03.31

Abstract

An understanding of the hydraulic characteristics in the compound channel with vegetation is important in designing stream restorations or managing the floodplain. A laboratory flume of 16 m long and 0.8 m wide was used for analysis of the hydraulic characteristics in the single section channel and the compound channel with artificial vegetation. Slope of experimental channel is 0.5 %. Discharges are ranged from $0.2\;m^3/s\;to\;$0.4\;m^3/s$. The experiments were done by changing water depth ratio, vegetation density and vegetation location. When water depth ratio in the single section channel with vegetation increase up to 3.5, the results showed that the increment of water depth due to vegetation may be ignored in practice. The maximum increment of water depth was measured up to 6 % in the compound channel with vegetation and the range of velocities increment in the low flow channel was from 25 % to 85 % compared with section average velocities. As the vegetation densities increase and water depth ratios decrease, the velocity of the low flow channel increased. The range of roughness coefficients in the vegetated reaches were estimated from 0.055 to 0.14 in the single section channel and from 0.063 to 0.085 in the compound channel using HEC-RAS and RMA-2 model.

홍수터에 식생된 하도에서 수리학적 특성의 이해는 하천복원사업을 계획하거나 홍수터를 관리하는데 중요하다. 본 연구에서는 길이 16 m,폭 0.8 m 의 실험수로에 인공식생을 이용하여 수리학적 특성변화를 분석하였다. 실험수로 단면은 단단면과 복단면으로 구분하였다. 하상경사는 0.5 %,유량은 $0.2\;m^3/s\;{\sim}\;0.4\;m^3/s$ 범위이고,수심비,식생밀도, 식생 위치를 변화시키면서 실험을 수행하였다. 단단면 수로 저면에 식생하였을 경우 수심비가 약,3.5 이상부터는 식생에 의한 수위 증가는 거의 없는 것으로 관측되었다. 복단면 홍수터에 관목을 식생 할 경우 수위 상승량은 최대 6% 정도이며,저수로 내 유속은 식생전의 단면평균유속에 비하여 약 25% ${\sim}$ 85% 정도로 증가하였다. 홍수터 식생에 의한 저수로 유속 증가량은 식생밀도와 비례하고 수심비와는 반비례한다. HEC -RAS 및 RMA-2 모형을 이용하여 산정된 식생 구간의 조도계수 범위는 단단면의 경우 0.055 ${\sim}$ 0.14 이며, 복단면에서는 0.063 ${\sim}$ 0.085 정도로 산정되었다.

Keywords

References

  1. 송재우, 박성식 (2004). '식생수로와 비식생수로에서의 조도특성 및 유속분포.' 대한토목학회논문집, 제24권 제6B호, 대한토목학회, pp. 545-552
  2. 여홍구, 박문형, 강준구, 김태욱 (2004). '개수로 내 식생구간의 흐름저항 및 흐름특성에 관한 실험적 고찰,' 한국환경복원녹화기술학회논문집, 제7권, 제6호, 한국환경복원녹화기술학회, pp. 61-74
  3. 우효섭 (2001). 하천수리학, 청문각
  4. 윤태훈, 신용진, 이지송 (2002). '수초영역으로 인한 개수로 흐름변화.' 대한토목학회논문집, 제22권, 제2B호, 대한토목학회, pp. 143-149
  5. 이동섭, 우효섭, 권보애, 안홍규 (2006). '식생 조도계수 산정을 위한 선별된 식생에 관한 실험 연구.' 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 1291-1294
  6. 이삼희, 옥기영, 강천수, 이진원 (2000). '하천식생에 의한 유사퇴적의 실험적 고찰.' 한국수자원학회 학술발표회 논문집, 한국수자원학회, pp. 634-639
  7. 조홍제, 최현군, 이태영 (2002). '도시하천의 둔치내 식생의 평면적 분포에 따른 홍수위 변화의 실험적 연구.' 한국수자원학회 논문집, 제35권, 제2호, 한국수자원학회, pp. 203-212 https://doi.org/10.3741/JKWRA.2002.35.2.203
  8. 최성욱 (2004). 레이저도츨러유속계를 이용한 식생수로의 난류 측정, 한국수자원학회 03분과위원화 연구과업보고서, 한국수자원학회, pp. 23-52
  9. 최성욱 (2005). '복단면 개수로의 1차원 수치모형의 개발.' 도시하천의 생태 및 수리특성 분석기술, 도시홍수재해관리기술연구단 기술보고서, 건설교통부, pp. 25-40
  10. Carollo, F.G., Ferro, V., and Termini, D. (2005). 'Flow resistance law in channels with flexible submerged vegetation.' Journal of Hydraulic Engineering, ASCE, Vol. 131, pp. 554-564 https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(554)
  11. Cokgor, S., cmd Kucukali, S. (2005). 'Variation of turbulence intensities in/around emergent vegetation zones.' 31st Congress of IHAR, Seoul, Korea, CD-ROM, PC -14
  12. Darby, S. E. (1999). 'Open channel and sheet flow over flexible roughness.' 21st Congress of IHAR, Melourne, Australia
  13. Darby, S. E. and Throne, C. R. (1996). 'Predictive stage-discharge curve in channels with bank vegetation.' Journal of Hydraulic Engineering, ASCE, Vol. 122, No. 10, pp. 583-586 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:10(583)
  14. Fukuoka, S., Fujita, K, and Niida, H. (1992). 'Prediction in flood water level of river course with vegetation.' Proc. of the Japan Society cf Civil Engineers, No. 447, pp. 17-24
  15. Fukuoka, S., Watanabe, A, Takatsugu, W., and Salamoto, H (2001). 'Mixing structure & flow development accompaning the change in the density of vegetation by conditional sampling method.' Annual Journal of Hydraulic Engineering, JSCE, Vol. 45, pp. 859-864 https://doi.org/10.2208/prohe.45.859
  16. James, C.S., Birkhead, A.L., Jordanova, A.A., and Osullovan, J,J, (2004). 'Flow resistance of emergent vegetation resislimce.' Journal of Hydraulic Research, Vol. 42, pp. 390-398 https://doi.org/10.1080/00221686.2004.9728404
  17. Jarvela, J. (2002). 'Flow resistance of flexible and stiff vegetation a flume study with natural plants.' Journal of Hydrology, Vol. 269, pp. 44-54 https://doi.org/10.1016/S0022-1694(02)00193-2
  18. Jordanoval, A. A. and James, C. S. (2003). 'Experimental study of bed load transport through emergent vegetation.' Journal of Hydraulic Engineering, ASCE, Vol. 129, No.6, pp. 474-478 https://doi.org/10.1061/(ASCE)0733-9429(2003)129:6(474)
  19. Kouwen, N., Unny, T.E., and Hill, HM. (1969). 'Flow retardance in vegetated channel.' Journal of the Irrigation and Drainage Diusion, ASCE, Vol. 95, No.2, pp. 329-340
  20. Lopez, F., and Garcia, M. H. (2001). 'Mean flow and turbulence structure of open-channel flow through non-emergent vegetation.' Journal of Hydraulic Engineering, ASCE, Vol. 127, pp. 392-402 https://doi.org/10.1061/(ASCE)0733-9429(2001)127:5(392)
  21. Masterman, R. and Throne, C. R. (1992). 'Predicting influence of bank vegetation on channel capacity.' Journal of Hydraulic Engineering, ASCE, Vol. 118, No.7, pp. 1052-1058 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:7(1052)
  22. Sellin, R.H.J. (1964), 'A laboratory investigation into the interaction between the flow in the Channel of a river and that over its floodplains,' La Houille Blanche, Vol. 7, pp.793-802
  23. Stephan, U. and Dieter, G. (2002), 'Hydraulic resistance of submerged flexible vegetation.' Journal of Hydrology, Vol. 269, pp. 27-43 https://doi.org/10.1016/S0022-1694(02)00192-0
  24. Stone, B.M. and Shen, H.T. (2002), 'Hydraulic resistance of flow in channels with cylindrical roughness.' Journal of Hydraulic Engineering, ASCE, Vol. 128, pp. 500-506 https://doi.org/10.1061/(ASCE)0733-9429(2002)128:5(500)
  25. Struve, J., Falconer, R.A., and Wu, Y. (2003), 'Influence of model mangrove trees on the hydrodynamics in a flume.' Estuarine Coastal and shelf Science, Vol. 58, pp. 163-171 https://doi.org/10.1016/S0272-7714(03)00072-6
  26. Wark, J.B., Samuels, P.G., and Ervine, D.A. (1990), 'A practical method of estimating velocity and discharge in a compound channel.' Flood Hydraulics, W. R. White(ed.), Wiley, Chichester, England
  27. Winson, C.A.M.E., Bates, P.D., and Hervouet, J.M. (2002). 'Comparison of turbulence models for stage-discharge rating curve prediction in reach scale compound channel flows using two-dimensional finite element.' Journal of Hydrology, Vol. 257, pp. 42-58 https://doi.org/10.1016/S0022-1694(01)00553-4
  28. Yang, K. (2005), 'Velocity distribution in compound channels with vegetation floodplains.' 31st Congress of IHAR, Seoul, Korea, CD-ROM, PC-22

Cited by

  1. Roughness Coefficients Evaluation of the Korean Riparian Vegetation vol.32, pp.6B, 2012, https://doi.org/10.12652/Ksce.2012.32.6B.345