• Title/Summary/Keyword: 평균풍속비

Search Result 108, Processing Time 0.027 seconds

Estimation on the Turbulence Characteristics of Daily Instantaneous Maximum Wind Velocity (일순간최대풍속의 난류특성에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.75-84
    • /
    • 2017
  • This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 17 points) during the yearly 1973-2016. The purpose of this paper is to present the turbulence statistic characteristics (probability distribution, correlation coefficient, turbulency intensity, shear velocity, roughness length, turbulence integral length, skewness, and kurtosis) of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration (KMA). The estimation of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional wind design load on the basis of Gaussian processes. This assumption breaks down when the instantaneous wind velocity processes exhibits non-Gaussianity. From the analysis results, the probability distribution of the daily instantaneous maximum wind velocity shows a very closed with non-Gaussian in the ensemble population 748, the correlation coefficient shows larger at inland area more than coastal area.

Estimation on the Power Spectral Densities of Daily Instantaneous Maximum Fluctuation Wind Velocity (변동풍속의 파워 스펙트럴 밀도에 관한 평가)

  • Oh, Jong Seop
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2017
  • Wind turbulence data is required for engineering calculations of gust speeds, mean and fluctuating loading. Spectral densities are required as input data for methods used in assessing dynamic response. This study is concerned with the estimation of daily instantaneous maximum wind velocity in the meteorological major cities (selected each 6 points) during the yearly 1987-2016.12.1. The purpose of this paper is to present the power spectral densities of the daily instantaneous maximum wind velocity. In the processes of analysis, used observations data obtained at Korea Meteorological Adminstration(KMA), it is assumed as a random processes. From the analysis results, in the paper estimated power spectral densities function(Blunt model) shows a very closed with von Karman and Solari's spectrum models.

Long term discharge simulation using an Long Short-Term Memory(LSTM) and Multi Layer Perceptron(MLP) artificial neural networks: Forecasting on Oshipcheon watershed in Samcheok (장단기 메모리(LSTM) 및 다층퍼셉트론(MLP) 인공신경망 앙상블을 이용한 장기 강우유출모의: 삼척 오십천 유역을 대상으로)

  • Sung Wook An;Byng Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.206-206
    • /
    • 2023
  • 지구온난화로 인한 기후변화에 따라 평균강수량과 증발량이 증가하며 강우지역 집중화와 강우강도가 높아질 가능성이 크다. 우리나라의 경우 협소한 국토면적과 높은 인구밀도로 기후변동의 영향이 크기 때문에 한반도에 적합한 유역규모의 수자원 예측과 대응방안을 마련해야 한다. 이를 위한 수자원 관리를 위해서는 유역에서 강수량, 유출량, 증발량 등의 장기적인 자료가 필요하며 경험식, 물리적 강우-유출 모형 등이 사용되었고, 최근들어 연구의 확장성과 비 선형성 등을 고려하기 위해 딥러닝등 인공지능 기술들이 접목되고 있다. 본 연구에서는 ASOS(동해, 태백)와 AWS(삼척, 신기, 도계) 5곳의 관측소에서 2011년~2020년까지의 일 단위 기상관측자료를 수집하고 WAMIS에서 같은 기간의 오십천 하구 일 유출량 자료를 수집 후 5개 관측소를 기준으로Thiessen 면적비를 적용해 기상자료를 구축했으며 Angstrom & Hargreaves 공식으로 잠재증발산량 산정해 3개의 모델에 각각 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온), 일 강수량과 잠재증발산량, 일 강수량 - 잠재증발산량을 학습 후 관측 유출량과 비교결과 기상자료(일 강수량, 최고기온, 최대 순간 풍속, 최저기온, 평균풍속, 평균기온)로 학습한 모델성능이 가장 높아 최적 모델로 선정했으며 일, 월, 연 관측유출량 시계열과 비교했다. 또한 같은 학습자료를 사용해 다층 퍼셉트론(Multi Layer Perceptron, MLP) 앙상블 모델을 구축하여 수자원 분야에서의 인공지능 활용성을 평가했다.

  • PDF

Changes in Evapotranspiration and Growth of Gold Mound, Japanese Spurge, and Ivy Plants According to Wind Speed (송악, 노랑조팝, 수호초의 풍속에 따른 증발산량 및 생육의 변화)

  • Park, Jihwan;Na, Haeyoung
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.72-76
    • /
    • 2021
  • The amount of evapotranspiration (water absorption) according to wind speed showed the same trend in gold mound (Spiraea × bumalda), Japanese spurge (Pachysandra terminalis), and ivy (Hedera japonica Tobler). All the three plants showed maximum water absorption at 4 m·s-1; water absorption tended to decrease as wind speed decreased. The control group without wind speed treatment had the most amount of water absorption compared with the groups that were subjected to wind exposure. However, the plant growth of all three plants increased to the maximum value when wind speeds were 2 and 1 m·s-1. When comparing the relationship among water absorption, air temperature, and relative humidity, the water absorption of plants tended to be low from May 20 to 26, when air temperature and relative humidity were the lowest. The results of this study will help establish an urban wall-planting system taking building wind into consideration. Further, this study may help in the selection of plant types for ecological parks in windy islands.

A Study on the Probability distribution of Recent Annal Fluctuating Wind Velocity (최근 연최대변동풍속의 확률분포에 관한 연구)

  • Oh, Jong Seop;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This study is concerned with the estimation of fluctuate wind velocity statistic properties in the major cities reflecting the recent meteorological with largest data samples (yearly 2003-2012). The basic wind speeds were standardized homogeneously to the surface roughness category C, and to 10m above the ground surface. The estimation of the extreme of non-Gaussian load effects for design applications has often been treated tacitly by invoking a conventional wind design (gust load peak factor) on the basis of Gaussian processes. This assumption breaks down when the loading processes exhibits non-Gaussianity, in which a conventional wind design yields relatively non conservative estimates because of failure to include long tail regions inherent to non-Gaussian processes. This study seeks to ascertain the probability distribution function from recently wind data with effected typhoon & maximum instantaneous wind speed.

Derivation of Nacelle Transfer Function Using LiDAR Measurement (라이다(LiDAR) 측정을 이용한 나셀전달함수의 유도)

  • Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.9
    • /
    • pp.929-936
    • /
    • 2015
  • Nacelle anemometers are mounted on wind-turbine nacelles behind blade roots to measure the free-stream wind speed projected onto the wind turbine for control purposes. However, nacelle anemometers measure the transformed wind speed that is due to the wake effect caused by the blades' rotation and the nacelle geometry, etc. In this paper, we derive the Nacelle Transfer Function (NTF) to calibrate the nacelle wind speed to the free-stream wind speed, as required to carry out the performance test of wind turbines according to the IEC 61400-12-2 Wind-Turbine Standard. For the reference free-stream wind data, we use the Light Detection And Ranging (LiDAR) measurement at the Shinan wind power plant located on the Bigeumdo Island shoreline. To improve the simple linear regression NTF, we derive the multiple nonlinear regression NTF. The standard error of the wind speed was found to have decreased by a factor of 9.4, whereas the mean of the power-output residual distribution decreased by 6.5 when the 2-parameter NTF was used instead of the 1-parameter NTF.

Estimation and Analysis of the Vertical Profile Parameters Using HeMOSU-1 Wind Data (HeMOSU-1 풍속자료를 이용한 연직 분포함수의 매개변수 추정 및 분석)

  • Ko, Dong-Hui;Cho, Hong-Yeon;Lee, Uk-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • A wind-speed estimation at the arbitrary elevations is key component for the design of the offshore wind energy structures and the computation of the wind-wave generation. However, the wind-speed estimation of the target elevation has been carried out by using the typical functions and their typical parameters, e.g., power and logarithmic functions because the available wind speed data is limited to the specific elevation, such as 2~3m, 10 m, and so on. In this study, the parameters of the vertical profile functions are estimated with optimal and analyzed the parameter ranges using the HeMOSU-1 platform wind data monitored at the eight different locations. The results show that the mean value of the exponent of the power function is 0.1, which is significantly lower than the typically recommended value, 0.14. The values of the exponent, the friction velocity, and the roughness parameters are in the ranges 0.0~0.3, 0~10 (m/s), and 0.0~1.0 (m), respectively. The parameter ranges differ from the typical ranges because the atmospheric stability condition is assumed as the neutral condition. To improve the estimation accuracy, the atmospheric condition should be considered, and a more general (non-linear) vertical profile functions should be introduced to fit the diverse profile patterns and parameters.

A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements (실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석)

  • Lee, Deok Keun;Kong, Min Joon;You, Dong Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.3
    • /
    • pp.349-359
    • /
    • 2016
  • In order to analytically evaluate buffeting responses, the analysis of wind characteristics such as turbulence intensity, turbulence length, gust, roughness coefficient, etc must be a priority. Static aerodynamic force coefficients, flutter coefficients, structural damping ratios, aerodynamic damping ratios and natural frequencies affect the analytical responses. The bridge interested in this paper has being been used for 32 years. As the time passes, current terrain conditions around the bridge are different markedly from the conditions it was built 32 years ago. Also, wind environments were considerably varied by the climate change. For this reason, it is necessary to evaluate the turbulence intensity, length, spectrum and roughness coefficient of the bridge site from full-scale measurements using the structural health monitoring system. The evaluation results indicate that wind characteristics of bridge site is analogous to that of open terrain although the bridge is located on the coastal area. To calculate buffeting responses, the analysis variables such as damping ratios, static aerodynamic force coefficients and natural frequency were evaluated from measured data. The analysis was performed with regard to 4 cases. The evaluated variables from measured data are applied to the first and second analysis cases. And the other analysis cases were performed based on Design Guidelines for Steel Cable Supported Bridges. The calculated responses of each analysis cases are compared with the buffeting response measured at less than 25m/s wind speed. It is verified that the responses by the numerical analysis applying the estimated variables based on full-scale measurements are well agreed with the measured actual buffeting responses under wind speed 25m/s. Also, the extreme wind speed corresponding to a recurrence interval 200 years is derived from Gumbel distribution. The derived wind speed for return period of 200 years is 45m/s. Therefore the buffeting responses at wind speed 45m/s is determined by the analysis applying the estimated variables.

Study on Measurement Method of Air Egress Velocity in Vestibule of Smoke Control System (특별피난계단 부속실 제연설비의 방연풍속 측정 방법에 관한 연구)

  • Lee, Su-Kyung;Hong, Dae-Hwa
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.85-90
    • /
    • 2011
  • This study of the vestibule of pressurizing smoke control system installed in domestic high-rise buildings for evacuation in case of fire, when the door is open to forming characteristics of the air flow was analyzed using fire dynamics simulator and analyzed of variance. Vestibule which is compartment of the design condition, air flow in the exhaust damper was formed severe turbulence confirming preceding research. The door position is in the range of formed vortex, unsteady flow of air occurs at the point that the door could be confirmed. According to the NFSC 501A, door to symmetrically separate the average of 10 points or more as measured from the average of wind speed to do is based. Under these conditions, it is difficult to measure the characteristics of the upper air flow of upper points. so measuring points are subdivided by more than 64 points method presented in TAB because severe deviation of wind speed.

Estimate of the Fluctuating Pressure Distribution of Tall Building under Hazard Fluctuating Wind Load (재난변동풍하중을 받는 고층건물의 변동풍압분포의 평가)

  • Hwang, Jin Cheol
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.49-56
    • /
    • 2013
  • In this paper, used by the boundary layer wind tunnel test, have conducted a series of wind tunnel experiments, i.e. test the mean velocity profile regarding the surface roughness, turbulence intensity and power spectrum measured by augmentation device. After that, to provide data relevant for the preliminary design step of tall building hazard fluctuating wind loads may be obtained fluctuating pressure coefficients, fluctuating pressure spectrum, autocorrelation coefficients by the boundary layer wind tunnel test. From the results of experiments, this study can be obtained conclusions as follows. 1. We know the fact that the mean velocity profile and the turbulence intensity are well fitted natural wind flow in the boundary layer wind tunnel. 2. The satisfactory agreement of velocity spectrum can be obtained from the compare of fluctuating power spectrum and Von Karman spectrum. 3. We know the fact that the fluctuating pressure spectrums distributed peak at 0.01 Hz-0.1 Hz in the windward surfaces and at 0.1 Hz in the leeward surfaces. 4. We know the fact that the autocorrelation coefficients distributed stationary random processes with application time of hazard fluctuating wind loads.