DOI QR코드

DOI QR Code

Changes in Evapotranspiration and Growth of Gold Mound, Japanese Spurge, and Ivy Plants According to Wind Speed

송악, 노랑조팝, 수호초의 풍속에 따른 증발산량 및 생육의 변화

  • Park, Jihwan (Major in Landscape Architecture, Mokpo National University) ;
  • Na, Haeyoung (Major in Horticultural Science, Mokpo National University)
  • Received : 2021.01.15
  • Accepted : 2021.01.23
  • Published : 2021.01.31

Abstract

The amount of evapotranspiration (water absorption) according to wind speed showed the same trend in gold mound (Spiraea × bumalda), Japanese spurge (Pachysandra terminalis), and ivy (Hedera japonica Tobler). All the three plants showed maximum water absorption at 4 m·s-1; water absorption tended to decrease as wind speed decreased. The control group without wind speed treatment had the most amount of water absorption compared with the groups that were subjected to wind exposure. However, the plant growth of all three plants increased to the maximum value when wind speeds were 2 and 1 m·s-1. When comparing the relationship among water absorption, air temperature, and relative humidity, the water absorption of plants tended to be low from May 20 to 26, when air temperature and relative humidity were the lowest. The results of this study will help establish an urban wall-planting system taking building wind into consideration. Further, this study may help in the selection of plant types for ecological parks in windy islands.

풍속에 따른 증발산량(수분흡수량)은 노랑조팝, 송악, 수호초 모두 같은 경향을 나타내었다. 세 식물 모두 4m·s-1의 강풍에서 가장 높은 수분흡수양상을 보였으며 풍속이 낮아질수록 수분흡수량도 함께 감소하는 경향을 보였다. 풍속처리없이 플라스틱 하우스 내의 기본 환경에 노출되어 있던 대조구는 바람에 노출되어 있던처리구에 비해 수분흡수량이 가장 작은 것을 확인하였다. 하지만 풍속에 따른 식물의 생육을 조사한 결과 송악, 수호초 그리고 노랑조팝 모두 2m·s-1와 1m·s-1의 풍속을 처리했을 때 식물의 초장과 엽수의 증가에 가장 효과적이었다. 식물체의 수분흡수 양상을 수분흡수 기간 중의 평균기온 및 상대습도와의 관계를 비교해보면 평균기온 18.7℃로 가장 낮은 기온과 평균상대습도 62%로 가장 낮았던 5월 20일부터 26일까지의 모든 식물들의 수분흡수량이 낮은 경향을 나타내었다. 본 연구의 결과는 도심의 열섬화 현상을 경감시키기 위한 기초자료로 활용 가능할 것이며 바람이 많이 부는 도서지역의 녹지공간조성시에 풍속에 따른 식물생육과 활착 안정화에 효과적인 수종검토에 도움이 되고 공간이 협소한 도심지역 녹화에 효과적인 저면관수형 벽면녹화 수종선택에 큰 도움을 줄 수 있을 것으로 기대된다.

Keywords

References

  1. Chae J.C., S.J. Park, B.H. Kang, and S.H. Kim. 2006. Principles of crop cultivation, Hyangmunsa press. Seoul, Korea. p. 198-201.
  2. Choi B., M.Y. Chun, and C.H. Lee. 2014. Evaluation for soil moisture stabilization and plant growth response in horizontal biofiltration system depending on wind speed and initial soil moisture, Korean J. Plant Res. 27:546-555. https://doi.org/10.7732/kjpr.2014.27.5.546
  3. Hopkins W.G. and N.P.A. Huner. 2006. Plant physiology. Worldscience, Seoul, Korea.
  4. Ju J.H. and J.H. Han. 2009. Response of the growth and root development of shade landscape plants by slit ventilation treatment into indoor container. J. Korean Inst. Landsc. Architecture 37:105-112.
  5. Ju J.H., H.R. Kim, and Y.H. Yoon. 2011. Effect of organic fertilizer ratios on the growth of Spiraea×bumalda 'Gold Mound' in container green wall systems with rainwater utilization. J. Environ. Sci. 20:1417-1423.
  6. Kim K.S. 1988. Wind. In: Agricultural meteorology. Hyangmunsa Press, Seoul, Korea. p. 84-110.
  7. Kim Y.S., K.D. Kim, D,Y. Kim, M.S. Byeon, G.J. Song, H.T. Shin, Y.H. An, G.G. Oh, K.J. Lee, Y.M. Lee, D.O. Lim, S.H. Jeon, S.H. Choi, and B.H. Han. 2006. Landscape Botany. KWANGIL Press, Suwon, Korea.
  8. Lee I.B., N.K. Yun, T. Boulard, J.C. Roy, S.H. Lee, G.W. Kim, S.K. Lee, and S.W. Hong. 2006. Development of aerodynamic simulation for studying microclimate of plant canopy in greenhouse-(1) Study on aerodynamix resistance of tomato canopy through wind tunnel experiment. J. Bio-Environ. Control 15:289-295.
  9. Lee I.B., N.K. Yun, T. Boulard, J.C. Roy, S.H. Lee, G.W. Kim, S.W. Hong, and S.H. Sung. 2006. Development of an aerodynamic simulation for studying microclimate of plant canpoy in greenhouse-(2) Development of CFD model to study the effect of tomato plants on internal climate of greenhouse. J. Bio-Environ. Control 15:294-305.
  10. Moon W. and D.J. Yu. 2013. Cultivated Plant Physiology. KNOU PRESS, Seoul, Korea.
  11. Oh S.D., J.M. Park, and D.G. Choi. 2004. Tree growth. In: S. D. Oh (Ed.). Fruit tree physiology in relation to temperature. Gilmogm Press, Seoul, Korea. p. 192-255.
  12. Ryoo S.B. and Y.A. Kim. 2000. Variation of evapotranspiration over forest site at Kwangneung: from fall to early winter. Asia-Pacific J. Atmospheric Sciences 36:43-50.
  13. Ryu S.N., K.S. Kim, and S.H. Woo. 2015. Cultivation theory. KNOU PRESS, Seoul, Korea.
  14. Shin S.C., M.H. Hwnag, I.H. Ko, and S.J. Lee. 2006. Suggestion of simple method to estimate evapotranspiration using vegetation and temperature information. J. Korea Water Resour. Association 39:363-372. https://doi.org/10.3741/JKWRA.2006.39.4.363
  15. Yim J.H., Y.M. Choi, and D.G. Choi. 2014. Effect of wind velocity on photosynthesis, sap flux, and damage of leaves in apple trees. Korean J. Agric. For Meteorology 16:131-136. https://doi.org/10.5532/KJAFM.2014.16.2.131
  16. Yun J.B. 2017. APG Tree encyclopedia. Jinseon PRESS, Seoul, Korea.