• 제목/요약/키워드: 평균제곱근오차

검색결과 358건 처리시간 0.032초

가뭄의 전이 현상을 고려한 수문학적 가뭄에 대한 베이지안 네트워크 기반 확률 예측 (Bayesian networks-based probabilistic forecasting of hydrological drought considering drought propagation)

  • 신지예;권현한;이주헌;김태웅
    • 한국수자원학회논문집
    • /
    • 제50권11호
    • /
    • pp.769-779
    • /
    • 2017
  • 최근 우리나라에서 빈번하게 발생되는 가뭄으로 인하여 많은 피해가 발생하고 있으며, 이에 대한 사전대응의 필요성이 커지고 있다. 가뭄에 대한 효과적인 사전대응을 위해서는 신뢰성 있는 가뭄 예측 정보가 필수적이다. 본 연구에서는 수문학적 가뭄에 대한 확률론적 예측을 수행하기 위하여 가뭄의 전이현상을 베이지안 네트워크 모형에 반영하였다. 가뭄의 전이현상을 고려한 베이지안 네트워크 기반의 가뭄 예측 모형(PBNDF)은 과거, 현재, 미래에 대한 다중 모형 앙상블 예측결과와 가뭄전이 관계를 결합하여 새로운 수문학적 가뭄 예측 결과를 생산하도록 구축되었다. 본 연구에서 PBNDF 모형은 파머수문학적 가뭄지수를 활용하여 낙동강 유역의 10개 지점을 대상으로 가뭄을 확률적으로 예측하는데 적용되었다. PBNDF 모형의 ROC 분석 결과 ROC 점수가 0.5 이상의 유의한 결과를 나타내 실제 예측 모형으로 활용가능하다는 것을 확인할 수 있었다. 또한, 기존에 개발된 모형(지속성 예측, 베이지안 네트워크 예측 모형)과 평균제곱오차의 제곱근(RMSE), 기술 점수(SS)를 활용하여 비교를 수행하였으며, 그 결과 PBNDF 모형의 RMSE는 상대적으로 낮은 값을 가지며, SS는 약 0.1~0.15 정도 높은 것으로 나타나 예측성능이 향상되었다는 것을 확인할 수 있었다.

라틴 하이퍼큐브 기반 신경망모델을 적용한 풍력발전기 피치제어기 최적화 (Optimization of Wind Turbine Pitch Controller by Neural Network Model Based on Latin Hypercube)

  • 이광기;한승호
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.1065-1071
    • /
    • 2012
  • 풍력발전기의 안정적인 전력생산은 정격풍속 이상에서 피치제어와 스톨제어와 같은 일정속도제어로 이루어지고 있다. 최근, 효율적인 전력생산을 위하여 정격풍속 이하의 변동풍속 조건에서 최대 출력을 얻기 위한 가변 속도제어가 적용되고 있는 추세이다. 기존의 피치제어기에서는 지글러-니콜스 계단응답법에 의한 제어기 최적화가 이루어지고 있으나, 가변 속도제어의 요구로 보다 정확한 최적화가 필요하게 되었다. 본 연구에서는 기존의 지글러-니콜스 계단응답법을 개선하기 위하여 라틴 하이퍼큐브 샘플링을 통한 신경망모델을 구축하고, 구축된 PID 제어 계수 신경망모델에 유전자 알고리즘을 적용하여 피치제어기를 최적화하였다. 유전자 알고리즘으로 구한 최적해가 지글러-니콜스 계단응답법의 초기해 보다 평균제곱근 오차가 13.4% 향상되었고, 응답특성을 나타내는 상승속도와 정착시간은 각각 15.8% 및 15.3%으로 개선되었다.

천리안 해양위성 2호(GOCI-II) 임무 초기 해무 탐지 산출: 해무의 광학적 특성 및 초기 검증 (The GOCI-II Early Mission Marine Fog Detection Products: Optical Characteristics and Verification)

  • 김민상;박명숙
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1317-1328
    • /
    • 2021
  • 본 연구는 천리안 해양위성 2호(GOCI-II)를 활용하여 개발된 해무 탐지 알고리즘의 초기 결과에 대한 분석을 수행하였다. GOCI-II 해무 탐지 성능을 확인하기 위해 1호와 2호가 중복으로 관측한 2020년 10월-2021년 3월 사이에 발생한 해무 사례에 대해 광학적 특성 분석을 실시하였다. 해무 탐지 알고리즘에 입력자료로 사용되는 412 nm 밴드 레일리 산란 보정 반사도(Rayleigh-corrected reflectance; Rrc)와 정규화된 국소 표준 편차(Normalized Local Standard Deviation; NLSD)를 GOCI, GOCI-II 자료를 시공간 일치시킨 뒤 분석한 결과 412 nm 밴드 레일리 Rrc의 경우 0.01의 평균 제곱근 오차 (Root Mean Squared Error; RMSE)와 0.998의 상관계수(correlation coefficient)을 나타내고, NLSD의 경우 0.007의 RMSE, 0.798의 correlation을 나타낸다. 해무와 구름이 갖는 광학적 특성을 분석하기 위해 천리안 해양위성 2호의 밴드 별 Rrc 값을 확인하였다. 구름의 경우 넓은 영역에서 높은 반사도를 보인 반면, 해무의 경우 모든 밴드에서 구름에 비해 상대적으로 반사도가 낮고 좁은 영역에 분포한다. 실제 해무 사례에 대해 GOCI와 GOCI-II 해무 탐지 알고리즘을 비교한 결과 전반적인 해무 탐지 성능은 크게 차이가 없으나 높아진 공간 해상도의 영향으로 해무 경계면에서 공간적으로 더 세밀한 탐지가 가능했다. 종관기상관측소 시정계 자료와 비교 분석하여 초기 자료에 대한 신뢰도를 조사하였다. 추후 충분한 샘플 확보로 인한 안정적인 성능 검증, 실시간 구름 정보 교체를 통한 후처리 과정 개선, 에어로졸 자료 추가로 해무 오탐지 감소를 통해 해무 탐지 알고리즘의 성능 향상이 기대된다.

CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구 (A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree)

  • 황순환;한성렬;이후진
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.580-586
    • /
    • 2021
  • 현재 사출성형분야의 Computer Aided Testing(CAT) 방법론으로 CAE(Computer Aided Engineering)를 이용한 수치 해석 기법이 주를 이루고 있다. 그러나 최근 시뮬레이션에 추가로 인공지능 기법을 응용하는 방법론이 연구되고 있다. 우리는 지난 연구에서 다양한 Machine Learning 기법을 활용하여 사출 성형 공정에 따른 변형 결과를 비교하였으며, 최종적으로 MLP(Multi-Layer Perceptron) 예측모델을 생성하였고, HMA(Hybrid Metaheuristic Algorithm)를 이용하여 최적화 결과를 얻어냈다. 그러나 MLP는 예측 성능이 우수한 반면 블랙박스와 같이 결정 과정에 대한 설명이 부족하다. 본 연구에서는 Radiator Tank 부품에 대하여 사출 성형 해석 소프트웨어인 Autodesk Moldflow 2018을 이용하여 수치 해석 기법으로 데이터를 생성하고, Machine Learning 소프트웨어인 RapidMiner Studio version 9.5를 활용하여 여러 Machine Learning Algorithms 모델을 생성하여 평균 제곱근 오차를 비교하였다. Decision-tree는 Root Mean Square Error(RMSE) 값이 다른 Machine Learning 기법에 비해 양호한 예측 성능을 갖추고 있었다. Decision-tree의 크기를 결정하는 Maximal Depth에 따라 분류 기준을 높일 수 있지만 복잡성도 함께 증가시켰다. Decision-tree를 이용하여 구속 조건을 만족하는 중간 값을 선정하여 시뮬레이션을 진행한 결과 기존의 시뮬레이션만 진행한 것보다 7.7%의 개선 효과가 있었다.

고해상도 동해 연안 파랑예측모델 구축을 위한 통계적 규모축소화 방법 적용 (An Application of Statistical Downscaling Method for Construction of High-Resolution Coastal Wave Prediction System in East Sea)

  • 지준범;조일성;이규태;이원학
    • 한국지구과학회지
    • /
    • 제40권3호
    • /
    • pp.259-271
    • /
    • 2019
  • 동해 연안지역의 고해상도 파랑예측을 위하여 통계적 규모축소화 방안을 적용하여 고해상도 동해 연안 파랑예측시스템을 구축하였다. 예측시스템을 구축하기 위하여 기상청 현업에서 예측된 동해 및 남해 연안파랑예측모델과 전구파랑예측모델의 예측결과를 이용하였다. 3일까지는 연안파랑예측모델들의 결과를 그대로 활용하였고 3일 이후 7일까지는 전구파랑예측모델의 예측결과를 통계적 규모축소화 방안(역거리 가중 내삽방법과 조건부합성방법)을 적용하여 예측하였다. 예측된 고해상도 연안예측시스템을 이용하여 예측된 파고의 2차원 공간분포는 연안예측모델의 초기장(분석장)과 자기상관관계를 이용하여 검증하였고 부이 등 해양관측소 자료를 이용하여 파고 및 풍속 예측을 검증되었다. 수치모델의 예측성능과 유사하게 초기시간에는 예측성능이 높게 나타났으나 시간이 지남에 따라 예측성능이 점진적으로 감소되었다. 전체 기간의 파고 예측결과를 파고 관측자료를 이용하여 검증하였을 때 역거리 가중 내삽과 조건부합성방법 적용에 따른 상관계수와 평균 제곱근 오차는 0.46과 0.34 m에서 0.6과 0.28 m로 개선되었다.

완전 참조 이미지 품질 평가를 이용한 지하 매질 물성 정보 도출 알고리즘의 정확성 평가 (Evaluating Accuracy of Algorithms Providing Subsurface Properties Using Full-Reference Image Quality Assessment)

  • 최승표;전형구;신성렬;정우근
    • 지구물리와물리탐사
    • /
    • 제24권1호
    • /
    • pp.6-19
    • /
    • 2021
  • 탄성파 탐사는 속도와 밀도 같은 지하 매질 물성 정보를 파악하고 지하 지층 구조를 영상화 할 수 있으며, 이를 위한 다양한 알고리즘 개발이 이루어지고 있다. 이러한 알고리즘의 성능 검증을 위해 다양한 기준 모델이 사용되며, 정확도의 경우 참 물성 데이터와의 평균 제곱근 오차(Root Mean Squre Error, RMSE)를 통해 정량적으로 평가할 수 있다. RMSE는 수치적으로 단순하다는 장점이 있지만 구조적인 품질과의 상관도가 높지 않다는 한계가 있다. 이러한 한계를 보완하기 위해 인간지각시스템을 반영한 FR-IQA (Full Reference Image Quality Assessment) 기법이 연구되고 있으며, 지하 물성 정보 데이터를 다룰 수 있는 FR-IQA 기법들을 선정하였다. 본 연구는 물성 정보 도출 알고리즘으로 완전 파형 역산을 선정하여 세 가지 기준 모델에서 수치예제 실험을 진행하였으며, 선정 된 FR-IQA 기법들을 이용하여 물성 정보 도출 알고리즘 정확성 평가를 수행하였다. 주요 구조 정확성 평가 시 암염모델 하부 구조의 경우 구조적으로 좋지 않음을 육안으로 확인할 수 있었으나 RMSE 값은 감소하며 결과의 부정확성을 표출하지 못하였다. 반면, 몇몇 FR-IQA의 경우 결과의 부정확성을 수치적으로 표출하는 것을 확인하였다.

자기공명영상장치의 뇌 T2 강조 영상에서 여기횟수 변화에 따른 영상 특성의 경향성 평가: MRiLab Simulation 연구 (Evaluation of Tendency for Characteristics of MRI Brain T2 Weighted Images according to Changing NEX: MRiLab Simulation Study)

  • 김남영;김주희;임준;강성현;이영진
    • 한국방사선학회논문지
    • /
    • 제15권1호
    • /
    • pp.9-14
    • /
    • 2021
  • 방사선에 의한 피폭 없이 대조도가 우수한 영상의 획득이 가능한 자기공명영상은 진단에 필수적이지만 영상에서의 노이즈 발생은 불가피한 요소이기 때문에 이를 보완하기 위해 자기공명영상장치의 변수들을 조절하여 우수한 특성을 가진 영상을 획득할 수 있다. 이 중, 여기횟수 (NEX; number of excitation)는 추가적인 영상 특성의 저하 없이 우수한 특성의 영상을 획득할 수 있지만 scan time이 증가하여 motion artifact를 발생시킬 수 있고, scan time의 증가에 비례하여 영상의 특성이 향상되지 않기 때문에 적절한 NEX의 설정이 필요하다. 따라서, 본 연구에서는 MRiLab simulation program을 통해 자기공명영상의 모든 변수들을 고정시킨 후, NEX만을 조절하여 획득한 뇌 T2 강조 영상의 정량적 평가를 통해 NEX 변화에 따른 영상 특성의 경향성을 평가하고자 하였다. 획득한 영상의 노이즈 레벨 및 유사도 평가를 하기 위해 신호 대 잡음비 (SNR; signal to noise ratio), 대조도 대 잡음비 (CNR; contrast to noise ratio), 평균 제곱근 오차 (RMSE; root mean square error) 그리고 최대 신호 대 잡음비 (PSNR; peak signal to noise ratio)를 계산하였다. 결과적으로, 노이즈 레벨 및 유사도 평가 인자 모두 NEX가 증가함에 따라 개선된 값을 보였으나, 점차 증가폭이 감소함을 보였다. 따라서, 과도하게 큰 NEX는 장시간의 scan에 따른 motion artifact를 발생시켜 영상 특성을 저하시킬 수 있으므로, 적절한 NEX의 설정이 중요함을 확인하였다.

딥러닝 기반의 연기 확산거리 예측을 위한 알고리즘 개발 기초연구 (Fundamental Study on Algorithm Development for Prediction of Smoke Spread Distance Based on Deep Learning)

  • 김별;황광일
    • 해양환경안전학회지
    • /
    • 제27권1호
    • /
    • pp.22-28
    • /
    • 2021
  • 본 연구는 화재진압 및 피난활동을 지원하는 딥러닝 기반의 알고리즘 개발에 관한 기초 연구로 선박 화재 시 연기감지기가 작동하기 전에 검출된 연기 데이터를 분석 및 활용하여 원격지까지 연기가 확산 되기 전에 연기 확산거리를 예측하는 것이 목적이다. 다음과 같은 절차에 따라 제안 알고리즘을 검토하였다. 첫 번째 단계로, 딥러닝 기반 객체 검출 알고리즘인 YOLO(You Only Look Once)모델에 화재시뮬레이션을 통하여 얻은 연기 영상을 적용하여 학습을 진행하였다. 학습된 YOLO모델의 mAP(mean Average Precision)은 98.71%로 측정되었으며, 9 FPS(Frames Per Second)의 처리 속도로 연기를 검출하였다. 두 번째 단계로 YOLO로부터 연기 형상이 추출된 경계 상자의 좌표값을 통해 연기 확산거리를 추정하였으며 이를 시계열 예측 알고리즘인 LSTM(Long Short-Term Memory)에 적용하여 학습을 진행하였다. 그 결과, 화재시뮬레이션으로부터 얻은 Fast 화재의 연기영상에서 경계 상자의 좌표값으로부터 추정한 화재발생~30초까지의 연기 확산거리 데이터를 LSTM 학습모델에 입력하여 31초~90초까지의 연기 확산거리 데이터를 예측하였다. 그리고 추정한 연기 확산거리와 예측한 연기 확산거리의 평균제곱근 오차는 2.74로 나타났다.

머신러닝 기법을 활용한 토압식 쉴드TBM 막장압 예측에 관한 연구 (A study on EPB shield TBM face pressure prediction using machine learning algorithms)

  • 권기범;최항석;오주영;김동구
    • 한국터널지하공간학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-230
    • /
    • 2022
  • 쉴드TBM (Tunnel Boring Machine) 터널 시공에 있어 막장압 관리는 막장면 붕괴, 지반침하 등을 방지하여 막장 안정성을 유지하는 데 중요한 역할을 담당한다. 특히, 챔버 내부의 굴착토로 막장압을 조절하는 토압식 쉴드TBM의 경우, 이수식 쉴드TBM에 비해 막장압의 관리가 어렵다. 본 연구에서는 국내 토압식 쉴드TBM 터널 시공 현장의 지반조건 및 굴진특성 데이터를 분석하여, 토압식 쉴드TBM 터널의 세그먼트 링별 막장압 예측모델을 제시하였다. 예측모델의 입력특성으로 7가지를 선정하였으며, 912개의 학습 데이터 세트(Training data set)와 228개의 시험 데이터 세트(Test data set)를 확보하였다. 최적의 토압식 쉴드TBM 막장압 예측모델 선정을 위하여 KNN (K-Nearest Neighbors), SVM (Support Vector Machine), RF (Random Forest), XGB (eXtreme Gradient Boosting) 모델의 하이퍼파라미터(Hyperparameter)를 최적화하여 예측성능을 비교한 결과, RF 모델이 7.35 kPa의 평균 제곱근 오차(Root Mean Square Error, RMSE)로 가장 우수한 성능을 나타냈다. 추가적으로, RF 모델의 특성 중요도(Feature importance) 분석을 수행한 결과, 입력특성 중 수압의 영향도가 0.38로 가장 높았으며, 전반적으로 지반조건이 굴진특성보다 높은 중요도를 보여주었다.

경험적 관계식을 이용한 X밴드 레이더의 정량적 강우 추정 (Quantitative precipitation estimation of X-band radar using empirical relationship)

  • 송재인;임상훈;조요한;정현교
    • 한국수자원학회논문집
    • /
    • 제55권9호
    • /
    • pp.679-686
    • /
    • 2022
  • 기후변화로 인한 돌발홍수의 발생 빈도 증가에 따라 X밴드 레이더를 이용한 보다 빠르고 정확한 강수 관측이 중요해지고 있다. 이에 환경부는 삼척과 울진에 2기의 이중편파 X밴드 레이더를 설치했다. 본 연구에서는 차폐 효과를 최소화하기 위해 설치된 2기의 각 레이더에서 2개의 고도각 관측을 수행한 뒤 얻어진 관측자료를 합성하여 정량강우를 산정하였다. 정량강우산정을 위해서 먼저 품질관리(QC) 기법을 적용한 뒤 비차등위상차(KDP)를 산출하고 하이브리드 고도면 강수추정(HSR) 기법을 적용하였다. 본 연구에서는 산출된 KDP를 이용해 R-KDP 관계로 불리는 강우강도와 비차등위상차의 관계식을 적용하여 얻어지는 정량적 강우추정(QPE)의 정확도 상승을 위해 해당 관계식의 매개변수를 추정했다. 매개변수 추정을 위해서 여러 개의 강우량계와 레이더 자료를 바탕으로 경험적 방법을 개발하였다. 새로 제안된 매개변수를 이용한 관계식(R = 27.4K0.81DP)은 관측된 강수량에 대해 추정된 강수의 상관계수를 선행연구대비 1% 정도 약간 상승시켰다. 마찬가지로, 제곱평균 제곱근오차는 3.88 mm/hr에서 3.68 mm/hr로 감소했고 편차는 -1.72에서 -0.92로 상관계수보다 유의미하게 감소해 정확도가 상승했음을 보였다.