• Title/Summary/Keyword: 평균유동장 경계조건

Search Result 10, Processing Time 0.031 seconds

Synthetic Turbulence Effect in Subsonic Backward Facing Step Flow Using LES (LES을 이용한 후향 계단 유동에서의 Synthetic turbulence 효과 연구)

  • Ahn, Sang-Hoon;Sung, Hong-Gye
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • The synthetic turbulence generation model for inlet boundary conditions of subsonic Backward Facing Step (BFS) was investigated. The average u-velocity and Reynolds stress at inlet boundary follows experimental data. Synthetic Eddy Method (SEM), random noise, and uniform flow conditions were implemented relative to the synthetic turbulence generation method. A three dimensional Large Eddy Simulation (LES) was applied for turbulent flow simulation. Turbulent and mean flow characteristics such as flow reattachment length, velocity profiles, and Reynolds stress profiles of BFS were compared with respect to the turbulent effects.

Study of Flowfield of the Interaction of Secondary Sonic Jet into a Supersonic Nozzle (음속 이차유동 분출시 나타나는 초음속 노즐 내부 유동장에 관한 연구)

  • Ko, Hyun;Lee, Yeol;Yoon, Woong-Sup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.45-52
    • /
    • 2003
  • Detailed flowfield resulting from the secondary sonic gas injection into a divergent section of supersonic conical nozzle has been numerically investigated. The three-dimensional flowfield associated with the bow-shock/boundary-layer interaction inside the nozzle has been solved by Reynolds-averaged Navier-Stokes equations with an algebraic and $\kappa$-$\varepsilon$ turbulence model. The numerical results have been compared with the experimental results for the identical flow conditions, and it is shown that the comparison is satisfactory Effects of different injection pressures of the secondary jet on the shock/boundary-layer interactions and the overall flow structure inside the nozzle have been investigated. The vortex structures behind the shock interaction and wall pressure variations have also been studied.

Development of internal inflow/outflow steady mean flow boundary condition using Perfectly Matched Layer for the prediction of turbulence-cascade interaction noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer 을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.521-526
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study(1) showed that Perfectly Matched Layer (PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

  • PDF

Development of Internal Inflow/outflow Steady Mean Flow Boundary Condition Using Perfectly Matched Layer for the Prediction of Turbulence-cascade Interaction Noise (난류-캐스케이드 상호작용 소음 예측을 위한 Perfectly Matched Layer을 이용한 내부 입/출구 정상유동 경계조건의 개발)

  • Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.7
    • /
    • pp.685-691
    • /
    • 2012
  • It is essential for the accurate time-domain prediction of broadband noise due to turbulence-cascade interaction to develop inflow/outflow boundary conditions to satisfy the following three requirements: to maintain the back ground mean flow, to nonreflect the outgoing disturbances and to generate the specified input gust. The preceding study showed that perfectly matched layer(PML) boundary condition was successfully applied to absorb the outgoing disturbances and to generate the specified gust in the time-domain computations of broadband noise due to interaction of incident gust with a cascade of flat-plates. In present study, PML boundary condition is extended in order to predict steady mean flow that is needed for the computation of noise due to interaction of incident gust with a cascade of airfoils. PML boundary condition is originally designed to absorb flow disturbances superimposed on the steady meanflow in the buffer zone. However, the steady meanflow must be computed before PML boundary condition is applied on the flow computation. In the present paper, PML equations are extended by introducing source term to maintain desired mean flow conditions. The extended boundary condition is applied to the benchmark problem where the meanflow around a cascade of airfoils is predicted. These illustrative computations reveal that the extended PML equations can effectively provide and maintain the target meanflow.

A study of flow characterisitics in a clean room with work table (작업대가 있는 청정실내의 유동특성에 관한 연구)

  • 이재헌;이진원;이상렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.852-860
    • /
    • 1986
  • The effect of placing a worktable in a vertical laminar flow clean room is invesgiated by a numerical simulation. The model clean room is assumed to be a rectangular square of 2m*2m, in which a worktable of 0.8m long and 0.1m thick is located at 0.7m above the floor. Major parameters are the horizontal position of the table and the inlet flow velocity. The flow is assumed to be laminar throughout the clean room. Navier-Stokes equations with the pressure terms are directly solved by the SIMPLE algorithm. Boundary conditions at the two exits are given in terms of pressure conditions. The flow pattern, pressure loss due to viscous friction, the ratio of flow rates through each exit and pressure imbalance at the exits are calculated. All of the flow characteristics are seen to vary substantially with the location of the table, but are quite insensitive to the inlet flow velocity(Reynolds number). As an example, the flow rate through each exit can very by as much as 30% depending on the location of the table.

Numerical Study of Laminar Flow and Heat Transfer in Curved Pipe Flow (곡관에서의 층류 유동 및 열전달에 관한 수치해석 연구)

  • Kang, Changwoo;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.10
    • /
    • pp.941-951
    • /
    • 2013
  • A three dimensional numerical simulation of laminar flow and heat transfer in fully developed curved pipe flow has been performed to study the effects of Dean number and pipe curvature on the flow and temperature fields under the thermal boundary condition of axially uniform wall heat flux. The Reynolds number under consideration ranges from 100 to 4000, and the Prandtl number is 0.71. The curvature ratios are 0.01, 0.025, 0.05 and 0.1. The axial velocity and temperature profiles and the local Nusselt number obtained from the present study are in good agreement with the previous numerical and experimental results currently available. To show the effects of pipe curvature on the flow and heat transfer, the resistance coefficients and heat transfer coefficients are computed and compared with the results of the previous theoretical and experimental studies. The averaged Nusselt number is correlated with Dean and Prandtl numbers. Furthermore, the critical Reynolds number for transition to turbulent flow is observed to depend upon the curvature ratio.

An Experimental Study of Mutual Relation between Wake and Boundary Layer of a Flat Plate; Mean Velocity Field (평판 경계층과 후류와의 상호관계에 관한 연구; 평균속도장)

  • Kim, Dong-Ha;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.10
    • /
    • pp.1-11
    • /
    • 2004
  • An experimental study was carried out to investigate the influence of flow conditions of a boundary layer on the near-wake of a flat plate. Various attaching positions of tripping wires were selected to change flow conditions on a boundary layer. Laminar, transitional, and turbulent boundary layer conditions at 0.98C from the leading edge are imposed to investigate the evolution of symmetric and asymmetric wake. An x-type hot-wire probe(55P61) is employed to measure at 8 stations of the near-wake region. Measured mean velocity distributions are presented in terms of similarity parameter. It is found that the symmetric wake collapses well to the universal profile in the central part of the wake. However, the universal profile is not suitable in describing an asymmetric wake.

A Study on the natural Convection and Radiation in a Rectangular Enclosure with Ceiling Vent (천장개구부를 갖는 정사각형 밀폐공간내의 자연대류-복사 열전달에 관한 연구)

  • Park Chan-kuk;Chu Byeong-gil;Kim chol;Jung Jai-hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.28-39
    • /
    • 1998
  • This study investigated the natural convection and radiation in a rectangular enclosure with ceiling vent experimentally and numerically. A heat source is located on the center of the bottom surface. The analysis was peformed a pure convection and is combination of natural convection and radiation. The shape of the considered two dimensional model is a square whose center of ceiling($30\%$) is opened. The numerical simulations are carried out for the pure natural convection case and the combined heat transfer case by using the SIMPLE algorithm. For the turbulent flow, Reynolds stresses are closed by the standard $k-{\epsilon}$ model and the wall function is used to determine the wall boundary conditions. The experiment was performed on the same geometrical shape as the computations. The radiative heat transfer is analized by the S-N discrete ordinates method. The results of pure natural convection are compared with those of combined heat transfer by the velocity vectors, stream lines, isothermal lines. The results obtained are as follows 1. Comparing the results of pure convection with those of the combined convection-radiation through the shape of stream lines, isothermal lines are similar to each other. 2. The temperature fields obtained by numerical method are compared to those obtained by experimental one, and it is found that they are showed mean relative error $8.5\%$. 3. Visualization bt smoke is similar to computational results.

  • PDF

Prediction of Isothermal and Reacting Flows in Widely-Spaced Coaxial Jet, Diffusion-Flame Combustor (큰 지름비를 가지는 동축제트 확산화염 연소기내의 등온 및 연소 유동장의 예측)

  • O, Gun-Seop;An, Guk-Yeong;Kim, Yong-Mo;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2386-2396
    • /
    • 1996
  • A numerical simulation has been performed for isothermal and reacting flows in an exisymmetric, bluff-body research combustor. The present formulation is based on the density-weighted averaged Navier-Stokes equations together with a k-epsilon. turbulence model and a modified eddy-breakup combustion model. The PISO algorithm is employed for solution of thel Navier-Stokes system. Comparison between measurements and predictions are made for a centerline axial velocities, location of stagnation points, strength of recirculation zone, and temperature profile. Even though the numerical simulation gives acceptable agreement with experimental data in many respects, the present model is defictient in predicting the recoveryt rate of a central near-wake region, the non-isotropic turbulence effects, and variation of turbulent Schmidt number. Several possible explanations for these discrepancies have been discussed.

Three-Dimensional Mixing Characteristics in Seomjin River Estuary (섬진강 하구역의 3차원 혼합특성 연구)

  • Kim, Jong-Kyu;Kwak, Gyeong-Il;Jeong, Jeong-Ho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.164-174
    • /
    • 2008
  • In this study we try to identify the three-dimensional mixing characteristics of Seomjin River discharges in Seomjin River Estuary and Gwangyang Bay using a seasonal field observation (CTD) during spring tide and a three-dimensional numerical model with EFDC (Environmental Fluid Dynamics Code). The tidal elevation conditions of the four main tidal harmonic constituents on the open boundary and river discharges and thermal effluents at the specific boundary are considered. The calculated harmonic constants of tide and tidal current agreed well with those of observations at two stations for tide and two stations for tidal current. The model successfully reproduced well known the estuarine circulation in Seomjin River Estuary where tide and river discharges are dominant forcings. In the winter mean discharges case, tidal currents move Seomjin River discharges in Seomjin River mouth and in the summer mean discharges case, river flows move Seomjin River discharges near ae Seomjin River Estuary. A three-dimensional mixing characteristics of Seomjin River Estuary show well a three-dimensional estuarine circulation and thermal effluents effect to the seasonal variation of river discharges.

  • PDF