• Title/Summary/Keyword: 평균선량

Search Result 734, Processing Time 0.024 seconds

Shielding Effect of Radiation Protector for Interventional Procedure (중재적 방사선 분야 방호용구 차폐효과)

  • Ko, Shin-Kwan;Kang, Byung-Sam;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.213-219
    • /
    • 2007
  • The purpose of this study is to evaluate shielding effect of radiation protector for interventional radiologists in procedures by measuring inside and outside of radiation protector. In this study, we measured the radiation dose of 4 interventional radiologists during TACE and PTBD procedure for 4 month(2005.05-2005.09). Absorbed dose were measured by TLD placed underneath and over radiation protector such as Goggle, Thyroid protector, Apron and placed on the 4th finger of Hand. In addition, we measured background radiation dose in the control room using TLD. During TACE procedure, using 0.07 mmPb Goggle decreased average 53.8% of radiation dose rate in continuous fluoroscopic mode and decreased average 77.6% of radiation dose rate in pulse fluoroscopic mode. Using 0.5 mmPb Thyroid protector decreased average 88.9% of radiation dose rate in continuous fluoroscopic mode and decreased average 92.8% in pulse fluoroscopic mode. During PTBD procedure, using 0.07 mmPb Goggle decreased radiation dose rate average 62.7%, 87.9% by 0.5 mmPb Thyroid protector, 90.5% by 0.5 mmPb Apron. The average fluoroscopic time of PTBD was 6.14 min. shorter than TACE procedure, but radiation exposure dose rate of PTBD was 3 times higher in total body dose, and 40 times higher in hand dose rate than TACE. Interventional radiologists must wear thicker protector recommended over 0.5 mmPb. Also, they must use lead Goggle during interventional procedure. Abdomen dose decreased average 38.4% by drawing a lead curtain under the patient's table, therefore, they must draw a lead curtain to shield scattering ray. Radiation exposure dose decreased average 59.0% by using pulse fluoroscopic mode. So radiologists would better use pulse fluoroscopic mode than continuous fluoroscopic mode to decrease exposure dose.

  • PDF

A Comparative Evaluation of Organ Doses in Infants and toddlers between Axial and Spiral CT Scanning (축방향 CT 스캔과 나선형 CT 스캔에서 영·유아의 장기흡수선량 비교 평가)

  • Kim, Sangtae;Eun, Sungjong;Kim, Sunggil
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.2
    • /
    • pp.137-143
    • /
    • 2013
  • This study presents comparison results between axial and spiral scanning in the head and chest region with 64 MDCT to evaluate organ doses in infants and toddlers, who are more radiosensitive to radiation than adults and rise in the number of CT examinations, during CT scanning. Organ doses were significantly lower in spiral scanning than axial scanning regardless of scanned regions. The average organ dose for the chest scan using pitch of 1.355 was found to be significantly higher(average -12.03%) than for the other two pitch settings(0.525 and 0.988) in the spiral scanning mode compared with the axial one. Organ doses in the spiral scanning mode were lower by average 20.54% than the axial scanning mode. The results of the study that evaluated organ doses with an anthropomorphic phantom will help to demonstrate the result values of Monte Carlo simulations and make a contribution to more accurate evaluations of organ doses in toddlers undergoing a CT examination.

Evaluation of Terrestrial Gamma Radiation and Dose Rate of the Ogcheon Group Area (옥천층군 일대의 지표방사능과 감마선량 평가)

  • Yun, Uk;Cho, Byong-Wook
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.577-588
    • /
    • 2020
  • We evaluated the distributions of primordial radionuclides and effective dose rate of the Ogcheon Group, which includes rocks with high uranium content. Terrestrial gamma radiation was measured at 421 points using a portable gamma ray spectrometer. Dividing the study area into five geological units (og1, og2, og3, og4, and igneous rocks) revealed no significant difference in the concentration of surface radioactivity among the types. The concentrations of 40K, eU, and eTh for all samples ranged from 0.7% to 10.3% (average 5.2%), 0.6 to 287.0 ppm (average 8.5 ppm), and 4.0 to 102.4 ppm (average 31.3 ppm), respectively. The absorbed dose rate in the study area (calculated from the activity concentrations of 40K, eU, and eTh) was in the range of 28.84 to 1,714.5 nGy/h (average 195.4 nGy/h). Among the five geological units, the lowest average was 166.3 nGy/h (for og1) and the highest average was 233.3 nGy/h (for og2; median 198.1 nGy/h). The outdoor effective dose rate for the area obtained from the absorbed dose rate was in the range of 0.04 to 2.10 mSv/y (average 0.24 mSv/y). Except for the four sites located in the uranium-bearing coal bed of og2, none of the studied sites exceeded 1 mSv/y.

Research for Lateral Penumbra and Dose Distribution When Air Gap Changing in Proton Therapy Case (양성자치료시 Air Gap 변화에 따른 Lateral Penumbra와 선량분포 변화에 대한 비교 및 연구)

  • Kim, Jae-Won;Sim, Jin-Seob;Jang, Yo-Jong;Kang, Dong-Yun;Choi, Gye-Suk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.22 no.1
    • /
    • pp.47-51
    • /
    • 2010
  • Purpose: In the treatment of high-energy protons Air gap (the distance between the patient and the exit Beam) Lateral Penumbra of the changes to the increase in the radiation fields can form unnecessary and Increase the maximum dose at the site of treatment and reduced the minimum dose homogeneity of dose distributions can decline. Air gap due to this change in dose distribution compared to investigate studied. Materials and Methods: Received proton therapy at our institution Lung, Liver patients were selected and the size of six other Air gap in Field A and Field B 2, 4, 6, 8, 10 cm Proton external beam planning system by setting up a treatment plan established. Air gap according to the Lateral Penumbra area and DVH (Dose Volume Histogram) to compare the maximum dose and minimum dose of PCTV areas were compared. In addition, the dose homogeneity within PCTV Homogeneity index to know the value and compared. Results: Air gap (2, 4, 6, 8, 10 cm) at each change in field size were analyzed according to the Lateral Penumbra region Field A Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 28.7% and Field B Change in the Air gap 2~10 cm by 1.36~1.75 cm, the average continuously increased about 31.6%. The result of DVH analysis for relative dose of the maximum dose According to Air gap 2~10 cm is the mean average of 110.3% from 108.1% to a sustained increased by approximately 2.03% and The average relative dose of minimum dose is the mean average of 93.9% percent to 90.8 percent from the continuous decrease of about 3.31 percent. The result of Homogeneity index value to the according to Air gap 2~10 cm is the 2-fold increase from 1.09 to 2.6. Conclusion: In proton therapy case, we can see the increasing of lateral penumbra area when airgap getting increase. And increasing of Dmax and decreasing Dmin in the field are making increase homogeneity index, So we can realize there are not so good homogeneity in the PCTV. Therefore we should try to minimize air gap in proton therapy case.

  • PDF

Analysis of the major factors of influence on the conditions of the Intensity Modulated Radiation Therapy planning optimization in Head and Neck (두경부 세기견조방사선치료계획 최적화 조건에서 주요 인자들의 영향 분석)

  • Kim, Dae Sup;Lee, Woo Seok;Yoon, In Ha;Back, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • Purpose : To derive the most appropriate factors by considering the effects of the major factors when applied to the optimization algorithm, thereby aiding the effective designing of a ideal treatment plan. Materials and Methods : The eclipse treatment planning system(Eclipse 10.0, Varian, USA) was used in this study. The PBC (Pencil Beam Convolution) algorithm was used for dose calculation, and the DVO (Dose Volume Optimizer 10.0.28) Optimization algorithm was used for intensity modulated radiation therapy. The experimental group consists of patients receiving intensity modulated radiation therapy for the head and neck cancer and dose prescription to two planned target volume was 2.2 Gy and 2.0 Gy simultaneously. Treatment plan was done with inverse dose calculation methods utilizing 6 MV beam and 7 fields. The optimal algorithm parameter of the established plan was selected based on volume dose-priority(Constrain), dose fluence smooth value and the impact of the treatment plan was analyzed according to the variation of each factors. Volume dose-priority determines the reference conditions and the optimization process was carried out under the condition using same ratio, but different absolute values. We evaluated the surrounding normal organs of treatment volume according to the changing conditions of the absolute values of the volume dose-priority. Dose fluence smooth value was applied by simply changing the reference conditions (absolute value) and by changing the related volume dose-priority. The treatment plan was evaluated using Conformal Index, Paddick's Conformal Index, Homogeneity Index and the average dose of each organs. Results : When the volume dose-priority values were directly proportioned by changing the absolute values, the CI values were found to be different. However PCI was $1.299{\pm}0.006$ and HI was $1.095{\pm}0.004$ while D5%/D95% was $1.090{\pm}1.011$. The impact on the prescribed dose were similar. The average dose of parotid gland decreased to 67.4, 50.3, 51.2, 47.1 Gy when the absolute values of the volume dose-priority increased by 40,60,70,90. When the dose smooth strength from each treatment plan was increased, PCI value increased to $1.338{\pm}0.006$. Conclusion : The optimization algorithm was more influenced by the ratio of each condition than the absolute value of volume dose-priority. If the same ratio was maintained, similar treatment plan was established even if the absolute values were different. Volume dose-priority of the treatment volume should be more than 50% of the normal organ volume dose-priority in order to achieve a successful treatment plan. Dose fluence smooth value should increase or decrease proportional to the volume dose-priority. Volume dose-priority is not enough to satisfy the conditions when the absolute value are applied solely.

Analysis of individual exposure dose of workers and clinical practice students in radiation management area (방사선관리구역내의 종사자 및 임상실습 학생의 개인피폭선량 분석)

  • Lee, joo-ah;Kay, chul-seung
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2017.05a
    • /
    • pp.307-308
    • /
    • 2017
  • 방사선구역내의 종사자 간의 피폭선량 비교와, 동일한 구역내에서 임상실습에 임하는 학생들의 선량을 비교하여 방사선방어의 최적화에 대한 기초자료를 제공하고자 하였다. 연구대상은 2016년 1월부터 동년 12월까지 C대학병원 방사선관리구역에 재직중인 방사선관계종사자 121명과 방사선작업종사자 36명, 그리고 8주간의 임상실습을 이수한 121명의 학생을 비교 대상으로 하였다. 방사선관계종사자와 작업종사자 간의 평균 심부 및 표층선량은 관계종사자가 각각 $.7440{\pm}1.676mSv$$.7753{\pm}1.730mSv$ 가장 높게 나타났으며, 통계적으로 매우 유의하였다(p<.01). 3그룹간에는 심부선량의 경우 임상실습학생이 $.143{\pm}.136mSv$로 가장 높게 나타났고, 표층선량에서도 $.1513{\pm}.139mSv$로 가장 높게 나타났으며, 작업종사자가 두 경우 모두 가장 낮았으며, 그룹간의 평균의 차이는 통계적으로 매우 유의하였다(p<.01). 결론적으로 ALARA 원칙에 의거 철저한 관리가 필요하며, 특히 방사선안전관리의 사각지대에 놓여 있는 임상실습 학생에 대한 체계적인 피폭선량 관리가 필요할 것으로 사료된다.

  • PDF

Measurement of ECF for $CaSO_4:Dy$ Thermoluminescent Dosimeters ($CaSO_4:Dy$ 열형광선량계의 소자보정인자(ECF) 산출)

  • Lim, Kil-Sung;Kim, Jang-Lyul
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.4
    • /
    • pp.231-236
    • /
    • 2005
  • Dosimeters are manufactured from same process in the manufacturer but the deviation of TL raw counts exists among the dosimeters. TL raw counts are also gradually degrade due to multiple readings and physical abuse. ECF (Element Correction Factor) correct the degradation and deviation of TL raw counts to the average TL raw counts of reference dosimeters. Procedures for producing ECF of thermoluminescent dosimeters were described In detail. ECFs of 319 reference, control and field dosimeters were measured three times and average of three ECF values was calculated. Also, % CV(Coefficient of Variation) of three ECF values was calculated to verify ECF. ECF & % CV distributions for the field and control dosimeters are presented. TL raw counts of field dosimeters, being used about 6 times for the past 3 years, were almost unchanged, but those of control dosimeters being used more frequently, were degraded about 4.7 %.

A study to 3D dose measurement and evaluation for Respiratory Motion in Lung Cancer Stereotactic Body Radiotherapy Treatment (폐암의 정위적체부방사선치료시 호흡 움직임에 따른 3D 선량 측정평가)

  • Choi, Byeong-Geol;Choi, Chang-Heon;Yun, Il-Gyu;Yang, Jin-Seong;Lee, Dong-Myeong;Park, Ju-Mi
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.59-67
    • /
    • 2014
  • Purpose : This study aims to evaluate 3D dosimetric impact for MIP image and each phase image in stereotactic body radiotherapy (SBRT) for lung cancer using volumetric modulated arc therapy (VMAT). Materials and Methods : For each of 5 patients with non-small-cell pulmonary tumors, a respiration-correlated four-dimensional computed tomography (4DCT) study was performed. We obtain ten 3D CT images corresponding to phases of a breathing cycle. Treatment plans were generated using MIP CT image and each phases 3D CT. We performed the dose verification of the TPS with use of the Ion chamber and COMPASS. The dose distribution that were 3D reconstructed using MIP CT image compared with dose distribution on the corresponding phase of the 4D CT data. Results : Gamma evaluation was performed to evaluate the accuracy of dose delivery for MIP CT data and 4D CT data of 5 patients. The average percentage of points passing the gamma criteria of 2 mm/2% about 99%. The average Homogeneity Index difference between MIP and each 3D data of patient dose was 0.03~0.04. The average difference between PTV maximum dose was 3.30 cGy, The average different Spinal Coad dose was 3.30 cGy, The average of difference with $V_{20}$, $V_{10}$, $V_5$ of Lung was -0.04%~2.32%. The average Homogeneity Index difference between MIP and each phase 3d data of all patient was -0.03~0.03. The average PTV maximum dose difference was minimum for 10% phase and maximum for 70% phase. The average Spain cord maximum dose difference was minimum for 0% phase and maximum for 50% phase. The average difference of $V_{20}$, $V_{10}$, $V_5$ of Lung show bo certain trend. Conclusion : There is no tendency of dose difference between MIP with 3D CT data of each phase. But there are appreciable difference for specific phase. It is need to study about patient group which has similar tumor location and breathing motion. Then we compare with dose distribution for each phase 3D image data or MIP image data. we will determine appropriate image data for treatment plan.

Calculations of ISO Narrow and ANSI X-Ray Spectra, Their Average Energies and Conversion Coefficients (ISO Narrow Series및 ANSI의 X선 스펙트럼, 평균에너지 및 선량환산인자의 이론적 계산)

  • Kim, Jang-Lyul;Kim, Bong-Whan;Chang, Si-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 1995
  • In spite of the prescriptions on the reference X-ray fields given by the International Organization of Strandard(ISO) and American National Standard Institute(ANSI), the measurement of X-ray spectrum is not only time consuming but very difficult, paticularly when significant corrections have to be applied to the measured pulse-height distributions of the observed spectra. This paper describes the calculation method of ISO Narrow Series and ANSI X-ray filtered radiations by theoretical model which is modified framer's theory by target attenuation and backscatter correction. The X-ray spectra, average energies and conversion coefficients are calculated and compared with those obtained using the spectra prescribed by ISO and AMSI to assure good agreement.

  • PDF

Patient Dose in Mammography (유방촬영에서 환자 피폭선량)

  • Shin, Gwi-Soon;Kim, You-Hyun;Kim, Jung-Min;Kim, Chang-Kyun;Yang, Jeong-Hwa;Choi, Jong-Hak
    • Journal of radiological science and technology
    • /
    • v.28 no.4
    • /
    • pp.293-299
    • /
    • 2005
  • In the present investigation, we analyzed the data of 1,318 patients (2,636 images) who underwent mammographic examinations and obtained the distribution of the patient age and compressed breast thickness. We measured also average glandular doses (AGD) as function of compressed breast thickness. In order to obtain the values of AGD, we measured half value layer (HVL) and tube output (mR/mAs) for each kVp and target/filter combination. Entrance surface air kerma (ESAK) was calculated from the tube output as measured for each voltage used under clinical conditions and from the tube loading (mAs). AGD per exposure were calculated by multiplying the ESAK values by the conversion factors tabulated by Dance. We obtained in this study the following conclusions. The mean value of compressed breast thickness for cranio-caudal (CC) view was 35.8mm and that for medio-lateral oblique (MLO) view was 43.3 mm. The mean value of AGD for CC view was 1.55 mGy and that for MLO view was 1.70 mGy. The AGD for MLO view was 0.15 mGy (10%) higher than that for CC view because the thickness for MLO view was on average 4.8 mm higher than that for CC view. The values of AGD increased with increasing compressed brest thickness. The increased AGD value was on average 0.34 mGy per 10 mm in the thickness ranges $10{\sim}80\;mm$, therefore differences between the AGD values of each thickness were relative large. Thus, it is considered to need limited doses for mammography with the upper end of exposure range at several different compressed brest thickness.

  • PDF