• Title/Summary/Keyword: 평균선량

Search Result 734, Processing Time 0.027 seconds

Comparison of Esophageal Cancer Radiation Therapy Plans Using Volumetric Modulated Arc Therapy (체적 조절 호형 방사선치료(VMAT)를 활용한 식도암 치료계획 비교)

  • Won-Young Jeong;Jae-Bok Han;Young-Hyun Seo;Jong-Nam Song
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.249-256
    • /
    • 2024
  • The study aimed to evaluate the efficacy of treatment plans using full Arc and Partial Arc Coplanar volumetric modulated arc therapy and Non-Coplanar volumetric modulated arc therapy to minimize radiation treatment side effects, such as pneumonia, and protect normal organs in esophageal cancer radiotherapy. 30 patients who underwent Concurrent Chemoradiotherapy for esophageal cancer were included. Compared planning target volume, lung, heart, spinal cord and total monitor units among three treatment plans: fVMAT(2 Full Arc), pVMAT(4 Partial Arc), and ncVMAT(2 Partial Arc + 2 Non-Coplanar Arc). All plans met the PTV criteria, showing uniform distribution. The average dose to the heart was 5.8 Gy for fVMAT, 6.97 Gy for pVMAT, and 7.6 Gy for ncVMAT, with the lowest value in fVMAT, which was statistically significant. However, the average lung dose was 9.01 Gy for fVMAT, 7.71 Gy for pVMAT, and 7.12 Gy for ncVMAT, with V5Gy(%) values of 52.22%, 38.61%, 36.35% and V10Gy(%) values of 37.8%, 27.33%, 24.15% respectively. ncVMAT showed the lowest values, while fVMAT had the highest, with statistical significance. In conclusion, ncVMAT effectively reduces lung radiation exposure in esophageal cancer radiotherapy, potentially reducing the incidence of side effects such as pneumonia. However, considering factors like setup accuracy and treatment time, applying an appropriate treatment plan may lead to better outcomes.

Estimation of Inhomogeneity Correction Factor in Small Field Dosimetry (소조사면에서의 불균질 물질 보정 계산의 평가)

  • Shin, Hun-Joo;Kang, Young-Nam;Jang, Ji-Sun;Seo, Jae-Hyuk;Jung, Ji-Young;Choi, Byung-Ock;Choi, Ihl-Bohng;Lee, Dong-Joon;Kwon, Soo-Il
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.260-268
    • /
    • 2009
  • In this study, we estimated inhomogeneity correction factor in small field. And, we evaluated accuracy of treatment planning and measurement data which applied inhomogeneity correction factor or not. We developed the Inhomogeneity Correction Phantom (ICP) for insertion of inhomogeneity materials. The inhomogeneity materials were 12 types in each different electron density. This phantom is able to adapt the EBT film and 0.125 cc ion chamber for measurement of dose distribution and point dose. We evaluated comparison of planning and measurement data using ICP. When we applied to inhomogeneity correction factor or not, the average difference was 1.63% and 10.05% in each plan and film measurement data. And, the average difference of dose distribution was 10.09% in each measurement film. And the average difference of point dose was 0.43% and 2.09% in each plan and measurement data. In conclusion, if we did not apply the inhomogeneity correction factor in small field, it shows more great difference in measurement data. The planning system using this study shows good result for correction of inhomogeneity materials. In radiosurgery using small field, we should be correct the inhomogeneity correction factor, more exactly.

  • PDF

Comparative evaluation of radiation exposure in radiation-related workers (방사선 작업종사자의 피폭선량 비교 평가)

  • Baek, Seong-Min;Jang, Eun-Sung
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.4
    • /
    • pp.195-200
    • /
    • 2011
  • The purpose of this study is to investigate the dose of radiation exposure to radiation-related workers in a hospital setting, thus increasing awareness of the health risk to the radiation-related workers. The result of the analysis showed the average dose of radiation exposure to radiation-related workers in hospital K was $0.75{\pm}0.26mSv$ in 2008, $0.67{\pm}0.30mSv$ in 2009, and $0.92{\pm}0.33mSv$ in 2010. The average dose of radiation exposure in hospital P was $0.43{\pm}0.13mSv$ in 2008, $0.43{\pm}0.20mSv$ in 2009, and $0.33{\pm}0.85mSv$ in 2010. The average dose of radiation exposure in hospital K by age group was 13.39mSv for age 20 to 29, 8.37mSv for age 30 to 39, 1.19mSv for age 40 to 49, 0.28mSv for age 50 to 59, and 0.32mSv for age 60 to 69 The average dose of radiation exposure in hospital P by age group was 0.33mSv for age 20 to 29, 1.41mSv for age 30 to 39, 0.83mSv for age 40 to 49, 1.66mSv for age 50 to 59, and 1.12mSv for age 60 to 69. Moreover, the average radiation exposure to radiation-related workers over 3 year period by gender group in hospital K was $2.92{\pm}1.03mSv$ for male group and $0.94{\pm}0.93mSv$ for female group. The average radiation exposure over 3 year period by gender group in hospital P was $0.66{\pm}0.18mSv$ for male group and $1.80{\pm}0.60mSv$ for female group. Persons working in diagnostic radiology department received mean of $1.65{\pm}1.54mSv/year$, mean $1.17{\pm}0.82mSv/year$ in radiation oncology, mean $1.79{\pm}1.42mSv/year$ at nuclear medicine department and mean $0.99{\pm}0.51mSv/year$ at other departments. Radiation exposure was higher than that of other departments(p<0.05). Doctors and technologists received higher radiation exposure (mean $1.75{\pm}1.17mSv/year$, $1.60{\pm}1.39mSv/year$ each) than other workers(p<0.05). Measurement and evaluation of radiation exposure in radiation-related workers should be widely conducted accurately and consistently in the radiation-related occupational setting so that people in these occupational settings are more aware of the risk from radiation exposure, and thus give more attention and caution to decrease radiation exposure. It would be essential to minimize accumulated radiation dose in the radiation-related occupational setting in order to maintain and improve the health of radiation-related workers.

Feasibility Study for Development of Transit Dosimetry Based Patient Dose Verification System Using the Glass Dosimeter (유리선량계를 이용한 투과선량 기반 환자선량 평가 시스템 개발을 위한 가능성 연구)

  • Jeong, Seonghoon;Yoon, Myonggeun;Kim, Dong Wook;Chung, Weon Kuu;Chung, Mijoo;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.241-249
    • /
    • 2015
  • As radiation therapy is one of three major cancer treatment methods, many cancer patients get radiation therapy. To exposure as much radiation to cancer while normal tissues near tumor get little radiation, medical physicists make a radiotherapy plan treatment and perform quality assurance before patient treatment. Despite these efforts, unintended medical accidents can occur by some errors. In order to solve the problem, patient internal dose reconstruction methods by measuring transit dose are suggested. As feasibility study for development of patient dose verification system, inverse square law, percentage depth dose and scatter factor are used to calculate dose in the water-equivalent homogeneous phantom. As a calibration results of ionization chamber and glass dosimeter to transit radiation, signals of glass dosimeter are 0.824 times at 6 MV and 0.736 times at 10 MV compared to dose measured by ionization chamber. Average scatter factor is 1.4 and Mayneord F factor was used to apply percentage depth dose data. When we verified the algorithm using the water-equivalent homogeneous phantom, maximum error was 1.65%.

A Study on the Reduction of Patient's Exposure Dose according to the Arrival Time of Contrast Media in Abdominal CT Scan using Bolus Tracking Technique (Bolus tracking 기법을 이용한 복부 CT 검사 시 조영제 도달시간에 따른 환자 피폭선량 감소에 관한 연구)

  • Lee, Seung yong;Han, Dong kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.93-100
    • /
    • 2021
  • The purpose of this study is to find out the factors that affect the patient's exposure dose during the abdominal CT scan using the bolus tracking technique, and reducing the radiation exposure to the patient during the abdominal CT scan using the bolus tracking technique by adjusting the delay time according to the corresponding factor. The experiment was divided into two parts, and the first experiment was conducted with 300 patients There were 188 males and 112 females, and their average age was 58±12.18(19~85). In the second experiment, 150 subjects (100 males and 50 females) who were undergoing their follow-up examination among the first experiment subjects, and the difference in dose before and after was compared by applying the delay time according to the influencing factor. As a result of the first experiment, there was a relationship between the arrival time of the contrast media and the heart rate, and it was found that the arrival time decreased as the heart rate increased for both men and women. As a result of the second experiment, the average dose of CTDIvol and DLP before/after applying the delay time according to the heart rate decreased 4.98 mGy and 5.33 mGy·cm in the male group, and 3.54 mGy and 3.88 mGy·cm in the female group. By applying proper delay time according to the patient's heart rate during abdominal CT scan with the bolus tracking technique, the radiation exposure dose of the patient can be reduced.

Radiation Protective Effect of the Thyroid Gland Using Bolus Protector in the Dental Cone Beam Computed Tomography (치과 콘빔 전산화단층검사 시 보루스 차폐체를 이용한 갑상선의 방사선 차폐효과)

  • Lee, Tae Hui;Jeong, Seung Hun;Kim, Dong Woo;Park, Myeong Hwan;Kim, Tae-Hyung
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.459-464
    • /
    • 2019
  • In order to minimize the radiation exposure dose of the thyroid site at dental cone-beam computer tomography, a protector using a Bolus was prepared, and the radiation shielding effect and the appropriateness of the image were evaluated. Using a dental cone-beam computed tomography (CBCT), a glass dosimeter was attached to the left and right sides of the thyroid for a dental radiation phantom, and the radiation dose was measured. The absorbed dose for each shield was measured by another method to 10 mm, 20 mm, and 30 mm-thickness, respectively. Eight evaluators evaluated whether or not the medical image is appropriate. When using a 30 mm Bolus shield at the left thyroid site, the resulting value is reduced by an average of $342.67{\mu}Gy$ by 20.7% from the average value of $431.22{\mu}Gy$ measured without using a Bolus shield, the right thyroid site In the case of using 30 mm Bolus shield, it showed a dose reduction effect of 21.9% with an average of $424.56{\mu}Gy$. The adequacy of the medical image was judged to be usable by both evaluators. In conclusion, the dental cone-beam computerized tomography can be used as a useful shielding material because it has a radiation shielding effect and it is possible to treat the diagnosis of the bolus protector in the thyroid without any obstruction shade in order to minimize the radiation dose.

Comparison the reference ion chamber in using the radioactive check source and field ion chamber for output dose for Co-60 source of remote afterloading system (시험선원을 이용한 기준 전리함의 감도변화와 임상필드전리함의 성능 안정성 비교)

  • 최태진
    • Progress in Medical Physics
    • /
    • v.12 no.2
    • /
    • pp.141-146
    • /
    • 2001
  • It is well known that assurance of the radiation therapy needs for an accuracy of $\pm$ 5 % in the delivery of an absorbed dose to target volume. Therefore, the dose evaluation of brachytherapy source and/or linear accelerate beam must be a stability with accuracy. In an advanced country, they recommended to use the radioactive check source for reference air ionization chamber for a stable response of radiation field chamber. In this experiments, the radioactive source Sr-90 and PR-05 air ionization chamber were used for standard source and reference ion chamber. The response of reference ion chamber showed as an 1.000$\pm$ 0.010 uncertainty for 10 years long and the evaliuation f dose discrepancy of clinical field ion chamber showed as 0.997 $\pm$0.011 in a $^{60}$ Co brachytherapy soruce. In our experiments, we can assuarance the long halflife standard source is reliable to preserve the calibration factor of reference chamber in stability.

  • PDF

Dose Evaluation Using Mathematical Simulation of Radiation Exposure Body in Mammography System (유방영상시스템에서 수학적 모의피폭체를 이용한 선량평가)

  • Lee, Jinsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • Mammography is mostly performed by series projection on both breasts. While taking mammography, it is less than average glandular dose of 3 mGy which regulated. But mammography is exposed much more doses actually, due to additional or series projection. Also, it is difficult to recognize around organ dose except exposed breast. Using mathematical simulation of radiation exposure body in mammography, we studied around organ dose distribution by changing thickness(25, 30, $50{\mu}m$) of filter and relative absorption dose rate which set on basis of exposed breast. as a result, when setting of basis of exposed breast, dose of opposite breast is more affected approximately from 79.26 to 86.31%. when using $25{\mu}m$ of filter thickness than $30{\mu}m$, $50{\mu}m$ of filter thickness in Mo/Mo, W/Rh combination which used actually, absorbed dose rates for opposite breast and around organ were low.

Efficacy and Accuracy of Patient Specific Customize Bolus Using a 3-Dimensional Printer for Electron Beam Therapy (전자선 빔 치료 시 삼차원프린터를 이용하여 제작한 환자맞춤형 볼루스의 유용성 및 선량 정확도 평가)

  • Choi, Woo Keun;Chun, Jun Chul;Ju, Sang Gyu;Min, Byung Jun;Park, Su Yeon;Nam, Hee Rim;Hong, Chae-Seon;Kim, MinKyu;Koo, Bum Yong;Lim, Do Hoon
    • Progress in Medical Physics
    • /
    • v.27 no.2
    • /
    • pp.64-71
    • /
    • 2016
  • We develop a manufacture procedure for the production of a patient specific customized bolus (PSCB) using a 3D printer (3DP). The dosimetric accuracy of the 3D-PSCB is evaluated for electron beam therapy. In order to cover the required planning target volume (PTV), we select the proper electron beam energy and the field size through initial dose calculation using a treatment planning system. The PSCB is delineated based on the initial dose distribution. The dose calculation is repeated after applying the PSCB. We iteratively fine-tune the PSCB shape until the plan quality is sufficient to meet the required clinical criteria. Then the contour data of the PSCB is transferred to an in-house conversion software through the DICOMRT protocol. This contour data is converted into the 3DP data format, STereoLithography data format and then printed using a 3DP. Two virtual patients, having concave and convex shapes, were generated with a virtual PTV and an organ at risk (OAR). Then, two corresponding electron treatment plans with and without a PSCB were generated to evaluate the dosimetric effect of the PSCB. The dosimetric characteristics and dose volume histograms for the PTV and OAR are compared in both plans. Film dosimetry is performed to verify the dosimetric accuracy of the 3D-PSCB. The calculated planar dose distribution is compared to that measured using film dosimetry taken from the beam central axis. We compare the percent depth dose curve and gamma analysis (the dose difference is 3%, and the distance to agreement is 3 mm) results. No significant difference in the PTV dose is observed in the plan with the PSCB compared to that without the PSCB. The maximum, minimum, and mean doses of the OAR in the plan with the PSCB were significantly reduced by 9.7%, 36.6%, and 28.3%, respectively, compared to those in the plan without the PSCB. By applying the PSCB, the OAR volumes receiving 90% and 80% of the prescribed dose were reduced from $14.40cm^3$ to $0.1cm^3$ and from $42.6cm^3$ to $3.7cm^3$, respectively, in comparison to that without using the PSCB. The gamma pass rates of the concave and convex plans were 95% and 98%, respectively. A new procedure of the fabrication of a PSCB is developed using a 3DP. We confirm the usefulness and dosimetric accuracy of the 3D-PSCB for the clinical use. Thus, rapidly advancing 3DP technology is able to ease and expand clinical implementation of the PSCB.

Analysis on the Dosimetric Characteristics of Tangential Breast Intensity Modulated Radiotherapy (유방암의 접선 세기조절 방사선치료 선량 특성 분석)

  • Yoon, Mee Sun;Kim, Yong-Hyeob;Jeong, Jae-Uk;Nam, Taek-Keun;Ahn, Sung-Ja;Chung, Wong-Ki;Song, Ju-Young
    • Progress in Medical Physics
    • /
    • v.23 no.4
    • /
    • pp.219-228
    • /
    • 2012
  • The tangential breast intensity modulated radiotherapy (T-B IMRT) technique, which uses the same tangential fields as conventional 3-dimensional conformal radiotherapy (3D-CRT) plans with physical wedges, was analyzed in terms of the calculated dose distribution feature and dosimetric accuracy of beam delivery during treatment. T-B IMRT plans were prepared for 15 patients with breast cancer who were already treated with conventional 3D-CRT. The homogeneity of the dose distribution to the target volume was improved, and the dose delivered to the normal tissues and critical organs was reduced compared with that in 3D-CRT plans. Quality assurance (QA) plans with the appropriate phantoms were used to analyze the dosimetric accuracy of T-B IMRT. An ionization chamber placed at the hole of an acrylic cylindrical phantom was used for the point dose measurement, and the mean error from the calculated dose was $0.7{\pm}1.4%$. The accuracy of the dose distribution was verified with a 2D diode detector array, and the mean pass rate calculated from the gamma evaluation was $97.3{\pm}2.9%$. We confirmed the advantages of a T-B IMRT in the dose distribution and verified the dosimetric accuracy from the QA performance which should still be regarded as an important process even in the simple technique as T-B IMRT in order to maintain a good quality.