• Title/Summary/Keyword: 페이딩 채널

Search Result 1,119, Processing Time 0.026 seconds

Multirate Multicarrier DS/CDMA with 2-Domain Spreading (2차원 확산을 사용하는 다중전송률 MC-DS/CDMA 시스템)

  • Kim, Nam-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.27-35
    • /
    • 2011
  • Multicarrier-Direct Sequence/Code Division Multiple Access(MC-DS/ CDMA) which is a combination of Orthogonal Frequency Division Multiplexing(OFDM) and DS/CDMA has been of significant interest as a means to take such advantages as bandwidth efficiency, high bit rate and robustness against multipath fading. In this paper we study a reduced-complexity multiuser detection aided multirate MC-DS/CDMA with time(T)-domain and frequency(F)-domain spreading. The one- dimensional orthogonal variable spreading factor(1D OVSF) code extracted from 2D OVSF code are used as a spreading code in T/F-domain. The proposed system will use code grouping interference cancellation(CGIC) receiver to reduce Multiuser Interference(MUI). The CGIC receiver uses code grouping by the correlation properties of 1D OVSF code and dose not requires the code information and activity of other user. The multiuser detector with CGIC receiver will be analyzed in Time- and Frequency-domain separately(jointly). The system performance is analytically derived in Additive White Gaussian Noise(AWGN) channel and we also compare the system performance between proposed system and T/F spreaded single(multi) rate multiuser MC-DS/CDMA system. In the computer simulation results, the proposed receiver of demonstrated huge performance improvement over conventional matched filter receiver.

Performance Analysis of Noncoherent OOK UWB Transceiver for LR-WPAN (저속 WPAN용 비동기 OOK 방식 UWB 송수신기 성능 분석)

  • Ki Myoungoh;Choi Sungsoo;Oh Hui-Myoung;Kim Kwan-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.1027-1034
    • /
    • 2005
  • IEEE802.15.4a, which is started to realize the PHY layer including high precision ranging/positioning and low data rate communication functions, requires a simple and low power consumable transceiver architecture. To satisfy this requirements, the simple noncoherent on-off keying (OOK) UWB transceiver with the parallel energy window banks (PEWB) giving high precision signal processing interface is proposed. The flexibility of the proposed system in multipath fading channel environments is acquired with the pulse and bit repetition method. To analyze the bit error rate (BER) performance of this proposed system, a noise model in receiver is derived with commonly used random variable distribution, chi-square. BER of $10^{-5}$ under the line-of-sight (LOS) residential channel is achieved with the integration time of 32 ns and signal to noise ratio (SNR) of 15.3 dB. For the non-line-of-sight (NLOS) outdoor channel, the integration time of 72 ns and SNR of 16.2 dB are needed. The integrated energy to total received energy (IRR) for the best BER performance is about $86\%$.

Monitoring-based Coordination of Network-adaptive FEC for Wireless Multi-hop Video Streaming (무선 멀티 홉 비디오 스트리밍을 위한 모니터링 기반의 네트워크 적응적 FEC 코디네이션)

  • Choi, Koh;Yoo, Jae-Yong;Kim, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.114-126
    • /
    • 2011
  • Video streaming over wireless multi-hop networks(WMNs) contains the following challenges from channel fading and variable bandwidth of wireless channel, and it cause degradation of video streaming performance. To overcome the challenges, currently, WMNs can use Forward Error Correction (FEC) mechanism. In WMNs, traditional FEC schemes, E2E-FEC and HbH-FEC, for video streaming are applied, but it has long transmission delay, high computational complexity and inefficient usage of resource. Also, to distinguish network status in streaming path, it has limitation. In this paper, we propose monitoring-based coordination of network-adaptive hop-to-end(H2E) FEC scheme. To enable proposed scheme, we apply a centralized coordinator. The coordinator has observing overall monitoring information and coordinating H2E-FEC mechanism. Main points of H2E-FEC is distinguishing operation range as well as selecting FEC starting node and redundancy from monitored results in coordination. To verify the proposed scheme, we perform extensive experiment over the OMF(Orbit Measurement Framework) and IEEE 802.1la-based multi-hop WMN testbed, and we carry out performance improvement, 17%, from performance comparison by existing FEC scheme.

A Computationally Efficient Scheduling Algorithm Capable of Controlling Throughput-Fairness Tradeoff (계산이 효율적인 전송률-형평성 트레이드오프 제어 스케줄링 알고리즘)

  • Lee, Min;Oh, Seong-Keun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.121-127
    • /
    • 2010
  • In this paper, we propose a computationally efficient scheduling algorithm that can arbitrarily control the throughput-fairness tradeoff in a multiuser wireless communication environment. As a new scheduling criterion, we combine linearly two well-known scheduling criteria such as one of achieving the maximum sum throughput and the other of achieving the maximum fairness, so as to control the relative proportion of the throughput and the fairness according to a control factor. For linear combining two different criteria, their optimization directivenesses and the units should be unified first. To meet these requirements, we choose an instantaneous channel capacity as a scheduling criterion for maximizing the sum throughput and the average serving throughput for maximizing the fairness. Through a unified linear combining of two optimization objectives with the control factor, it can provide various throughput-fairness tradeoffs according to the control factors. For further simplification, we exploit a high signal-to-noise ratio (SNR) approximation of the instantaneous channel capacity. Through computer simulations, we evaluate the throughput and fairness performances of the proposed algorithm according to the control factors, assuming an independent Rayleigh fading multiuser channel. We also evaluate the proposed algorithm employing the high SNR approximation. From simulation results, we could see that the proposed algorithm can control arbitrarily the throughput-fairness performance between the performance of the scheduler aiming to the maximum sum throughput and that of the scheduler aiming to the maximum fairness, finally, we see that the high SNR approximation can give a satisfactory performance in this situation.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.

PAPR Reduction Method of OFDM System Using Fuzzy Theory (Fuzzy 이론을 이용한 OFDM 시스템에서 PAPR 감소 기법)

  • Lee, Dong-Ho;Choi, Jung-Hun;Kim, Nam;Lee, Bong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.7
    • /
    • pp.715-725
    • /
    • 2010
  • Orthgonal Frequency Division Multiplexing(OFDM) system is effective for the high data rate transmission in the frequency selective fading channel. In this paper we propose PAPR(Peak to Average Power Ratio) reduction method of problem in OFDM system used Fuzzy theory that often control machine. This thesis proposes PAPR reducing method of OFDM system using Fuzzy theory. The advantages for using Fuzzy theory to reduce PAPR are that it is easy to manage the data and embody the hardware, and required smaller amount of operation. Firstly, we proposed simple algorithm that is reconstructed at receiver with transmitted overall PAPR which is reduced PAPR of sub-block using Fuzzy. Although there are some drawbacks that the operation of the system is increased comparing conventional OFDM system and it is needed to send the information about Fuzzy indivisually, it is assured that the performance of the system is enhanced for PAPR reducing. To evaluate the perfomance, the proposed search algorithm is compared with the proposed algorithm in terms of the complementary cumulative distribution function(CCDF) of the PAPR and the computational complexity. As a result of using the QPSK and 16QAM modulation, Fuzzy theory method is more an effective method of reducing 2.3 dB and 3.1 dB PAPR than exiting OFDM system when FFT size(N)=512, and oversampling=4 in the base PR of $10^{-5}$.

Analysis on the Performance Degradation of MIMO-OFDM Receiver and Hybrid Interference Cancellation with Low Complexity for the Performance Improvement Under High-Mobility Condition (MIMO-OFDM 수신기의 성능 열화 분석 및 고속 이동환경에서의 성능 향상을 위한 저복잡도 HIC 간섭제거 기법)

  • Kang, Seung-Won;Kim, Kyoo-Hyun;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.95-112
    • /
    • 2007
  • Spatial Multiplexing techniques, which is a kind of Multiple antenna techniques, provide high data transmission rate by transmitting independent data at different transmit antenna with the same spectral resource. OFDM (Orthogonal Frequency Division Multiplexing) is applied to MIMO (Multiple-Input Multiple-Output) system to combat ISI (Inter-Symbol Interference) and frequency selective fading channel, which degrade MIMO system performance. But, orthogonality between subcarriers of OFDM can't be guaranteed under high-mobility condition. As a result, severe performance degradation due to ICI is induced. In this paper, both ICI and CAI (Co-Antenna Interference) which occurs due to correlation between multiple antennas, and performance degradation due to both ICI and CAI are analyzed. In addition to the proposed CIR (Channel Impulse Response) estimation method for avoiding loss in data transmission rate, HIC (Hybrid Interference Cancellation) approach for guaranteeing QoS of MIMO-OFDM receiver is proposed. We observe the results on analytical performance degradation due to both ICI & CAI are coincide with the simulation results and performance improvement due to HIC are also verified by simulation under SCM-E Sub-urban Macro MIMO channel.

AT-DMB Reception Method with Eigen-space Beamforming Algorithm (고유 공간 빔형성 알고리즘을 이용한 AT-DMB 수신 방법)

  • Lee, Jae-Hong;Choi, Seung-Won
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.122-132
    • /
    • 2010
  • AT-DMB system has been developed to increase data rate up to double of conventional T-DMB in the same bandwidth while maintaining backward compatibility. The AT-DMB system adopted hierarchical modulation which adds BPSK or QPSK signal as enhancement layer to existing DQPSK signal. The enhancement layer signal should be small enough to maintain backward compatibility and to minimize the coverage loss of conventional T-DMB service coverage. But this causes the enhancement layer signal of AT-DMB susceptible to fading effect in transmission channel. A turbo code which has improved error correction capability than convolutional code, is applied to the enhancement layer signal of the AT-DMB system for compensating channel distortion. However there is a need for other solutions for better reception of AT-DMB signal in receiver side without increasing transmitting power. In this paper, we propose adaptive array antenna system with Eigen-space beamforming algorithm which benefits beamforming gain along with diversity gain. We analyzed the reception performances of AT-DMB system in indoor and mobile environments when this new smart antenna system and algorithm is introduced. The computer simulation results are presented along with analysis comments.

DNN-Based Dynamic Cell Selection and Transmit Power Allocation Scheme for Energy Efficiency Heterogeneous Mobile Communication Networks (이기종 이동통신 네트워크에서 에너지 효율화를 위한 DNN 기반 동적 셀 선택과 송신 전력 할당 기법)

  • Kim, Donghyeon;Lee, In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.10
    • /
    • pp.1517-1524
    • /
    • 2022
  • In this paper, we consider a heterogeneous network (HetNet) consisting of one macro base station and multiple small base stations, and assume the coordinated multi-point transmission between the base stations. In addition, we assume that the channel between the base station and the user consists of path loss and Rayleigh fading. Under these assumptions, we present the energy efficiency (EE) achievable by the user for a given base station and we formulate an optimization problem of dynamic cell selection and transmit power allocation to maximize the total EE of the HetNet. In this paper, we propose an unsupervised deep learning method to solve the optimization problem. The proposed deep learning-based scheme can provide high EE while having low complexity compared to the conventional iterative convergence methods. Through the simulation, we show that the proposed dynamic cell selection scheme provides higher EE performance than the maximum signal-to-interference-plus-noise ratio scheme and the Lagrangian dual decomposition scheme, and the proposed transmit power allocation scheme provides the similar performance to the trust region interior point method which can achieve the maximum EE.