• Title/Summary/Keyword: 퍼클로레이트(perchlorate)

Search Result 33, Processing Time 0.031 seconds

Analysis of Perchlorate in Water Using Ion Chromatograph with Preconcentration (이온크로마토그래프를 이용한 수중의 퍼클로레이트 농축 및 분석)

  • Kim, Hak-Chul
    • Journal of environmental and Sanitary engineering
    • /
    • v.21 no.4 s.62
    • /
    • pp.29-38
    • /
    • 2006
  • This study included the development of analytical method for determining perchlorate in water sample. The analytical condition was referred in EPA 314.0 method which use ion chromatography and the concentrator column was replaced by the guard column. Concentrating 10mL raw or treated water sample on to AGl6 guard column made it possible to get the LOD(Limit of Detection) of $0.73\;{\mu}g/L$. The total run time was 11 minutes and during run time next sample could be concentrated on AGl6 guard column. Compared to the Concentration method which needed manual operation, the Direct Injection method could screen the many water samples. The LOD of the Direct Injection method was higher and the sensitivity was lower than that of the Concentration method. The RSDs(Relative Standard Deviations) were lower than 2.5 % for peak height and 0.7 % for retention time in pre-concentration methods. This method Showed good reproducibility and reliability and it was thought the deviations of recovery value could be reduced by considering column capacity and making water sample homogeneous. Matrix Elimination could be done using the pre-concentration method if perchlorate were in complex matrix of sample.

The Characteristic Analysis and the Manufacture of Explosive THPP on PMD (PMD용 화약 THPP 제조 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Ahn, Gilhwan;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.84-89
    • /
    • 2016
  • THPP(Titanium Hydride Potassium Perchlorate) is an igniter composed of potassium perchlorate as oxidizing agent and titanium hydride as fuel with a Viton binder. THPP is commonly found in the aerospace, defence and automotive industries. This research is investigeted for the manufacturing process and characteristics analysis of the THPP such as the performance and shape/calorimetry/pressure characteristics of the THPP on PMD(Pyrotechnic Mechanical Device). Also, THPP composite ratio is designed by CEA program.

The Characteristic Analysis and the Manufacture of Explosive ZPP on PMD using the High Speed Mixing Process (고속 혼화공정을 이용한 PMD용 화약 ZPP 제작 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Kim, Junhyung;Ryu, Byungtae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.8-13
    • /
    • 2018
  • Zirconium potassium perchlorate(ZPP) is an igniter composed of potassium perchlorate as an oxidizing agent and zirconium as a fuel with a Viton binder. ZPP has been used to provide an ignition source in the aerospace, propulsion, and automotive industries. This study investigates the manufacturing process and characteristics of ZPP, such performance and shape/calorimetry/pressure characteristics with respect to pyrotechnic mechanical device(PMD). During the production of ZPP, the mixing process was designed to produce uniform particle size and shape by mixing the raw materials at high speed.

The Characteristic Analysis and the Manufacture of Explosive ZPP on PMD using the High Speed Mixing Process (고속 혼화공정을 이용한 PMD용 화약 ZPP 제작 및 특성분석)

  • Kim, Sangbaek;Shim, Jungseob;Kim, Junhyung;Ryu, Byungtae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.445-450
    • /
    • 2017
  • ZPP(Zirconium Potassium Perchlorate) is an igniter composed of potassium perchlorate as oxidizing agent and zirconium as fuel with a Viton binder. ZPP is used to provide ignition in the aerospace, propulsion, automotive industries. This research is investigated for the manufacturing process and characteristics analysis of the ZPP such as the performance and shape/calorimetry/pressure characteristics of the ZPP on PMD(Pyrotechnic Mechanical Device). During the production of ZPP, the mixing process was designed so that the ZPP could be produced in uniform particle size and shape by mixing the raw materials at high speed.

  • PDF

Occurrence of Perchlorate in Drinking Water in Korea (국내 주요 정수장 수돗물의 퍼클로레이트 검출현황)

  • Kim, Hyun-koo;Kim, Joung-hwa;Lee, Youn-hee
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.6
    • /
    • pp.822-828
    • /
    • 2007
  • Perchlorate is an unregulated contaminant but recently many cases of perchlorate contamination have been reported in the US. In Japan, also, a couple of contamination incidents caused by perchlorate occurred. Against this backdrop, investigation on perchlorate was urgent for Korea. Accordingly, perchlorate investigation in tap water and river water was conducted one time a week for seven consecutive weeks at major water sources of Korea including Han River, Guem River, Yeong-san River, and Nak-dong River. Perchlorate was not found at Han River, Guem River, and Yeong-san River. However, all the 4 tap water samples in Nak-dong River recorded high level of perchlorate. Among others, NT1 located at Daegu posted the highest value of $22.3{\mu}g/L$. This level is lower than $24.5{\mu}g/L$, the threshold recommended by US EPA. Still, perchlorate contamination in drinking water can deal a heavy blow to nerve development of infants and children by causing iodine deficiency. At the 1st and 2nd investigations, perchlorate concentration reached $18.7{\sim}95.6{\mu}g/L$ and $4.0{\sim}25.6{\mu}g/L$ respectively, both of which are relatively higher. The high perchlorate concentration in Nak-dong River was possible because of the waste water discharged from LCD manufacturing factory which was located at NS3 in Gumi, Korea. Perchlorate concentration of waste water from the factory was $730{\sim}1,858{\mu}g/L$.

Characteristics of Level of Perchlorate Pollution near Military Facility Areas (군사시설물 인근지역에서의 퍼클로레이트 오염수준 및 특성)

  • Choi, Jinsu;Um, Chul Yong;Chu, Kyoung Hoon;Ham, Seok Heon;Lee, Jong Hyeok;Yoo, Sung Soo;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.460-466
    • /
    • 2012
  • Perchlorate is used in a number of applications as an oxidizer in solid propellants, munitions and fireworks and is one of the endocrine disrupting chemicals, which interferes with iodide uptake into the thyroid gland. The purpose of this study was to investigate perchlorate occurrence and distribution with a results of analysis of 94 samples collected from military facilities in Korea from October 11 to October 23, 2011. Overall, among all of the 94 samples analyzed, perchlorate was detected in 6.4% of the total number of samples above $4{\mu}g/L$ (minimum reported limit) and the average concentration was $26.1{\mu}g/L$ and the maximum concentration was $107.7{\mu}g/L$ which was observed in surface water near manufacturing site of ammunition. By site classification, perchlorate was detected at one site in 4 manufacturing sites of ammunition and the maximum concentration was $107.7{\mu}g/L$ which was six times higher than that in guideline for perchlorate in Nakdong River and resulted from point source discharge. Perchlorate was detected at 3 sites in 78 measurements for shooting area and the maximum concentration was $12.4{\mu}g/L$ which was collected in dringking water and perchlorate in another sample was detected above MRL in shooting area was collected right away after shooting. These results showed that long term monitoring was needed considering weather conditions and shooting schedules.

Treatment of AP Solutions Extracted from Solid Propellant by NF/RO Membrane Process (NF/RO 멤브레인 공정을 적용한 고체추진제에서 추출된 암모늄 퍼클로레이트 (AP) 처리 연구)

  • Kong, Choongsik;Heo, Jiyong;Yoon, Yeomin;Han, Jonghun;Her, Namguk
    • Membrane Journal
    • /
    • v.22 no.4
    • /
    • pp.235-242
    • /
    • 2012
  • Ammonium perchlorate (AP) is primarily derived from the process of liquid incineration treatment when dismantling a solid rocket propellant. A series of batch dead-end nanofiltration (NF) and reverse osmosis (RO) membrane experiments were conducted to explore the retention mechanisms of AP under various hydrodynamic and solution conditions. Low levels of silicate type of siloxane had been detected through the GC/MS and FTIR analysis of liquid solutions extracted from solid ammonium perchlorate composite propellant (APCP). It is indicated that NF/RO membranes fouling in the presence of APCP was mainly attributed to the AP interactions because the concentration of silicate type of siloxane was negligible compared to that of AP. The osmotic pressure of AP was presumably resulted in the flux declines ranging from 13 to 17% in the case of the application of low-pressure (551 and 896 kPa for NF and RO) compared to those in application of high-pressure. The retention of AP by NF/RO membranes significantly varied from approximately 10 to 70% for NF and 26 to 87% for RO, depending on the operating and solution water chemistry conditions. The results suggested that retention efficiency of AP was fairly increased by reducing concentration polarization (i.e. application of low-pressure and stirring speed of 600 rpm) and increasing the pH of a solution. The result of this study was also consistent with the previous modeling of 'solute mass transfer of NF/RO membranes' and demonstrated that hydrodynamic and solution water chemistry conditions are to be a key factor in the retention of AP by NF/RO membranes.

Perchlorate Removal by River Microorganisms in Industrial Complexes (산업단지지역 하천 미생물에 의한 퍼클로레이트 제거)

  • Jo, Kang-Ick;Ahn, Yeonghee
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Perchlorate ($ClO_4^-$) is an emerging contaminant of soil/groundwater and surface water. $ClO_4^-$ has been shown to inhibit iodide uptake into the thyroid gland and cause a reduction in thyroid hormone production. $ClO_4^-$ is highly soluble and very stable in water. Biodegradation by $ClO_4^-$-reducing bacteria (PRB) is considered the most important factor in natural attenuation of $ClO_4^-$. Rivers in an industrial complex have potential to be contaminated with $ClO_4^-$ discharged from point or non-point sources. In this study, water samples were taken from the rivers running through the Gumi industrial complexes and used for batch test to analyze $ClO_4^-$-degradation potential of river microorganisms. The results of 83-h batch culture showed that $ClO_4^-$-removal efficiency of all samples was 0.77% or less without addition of an external electron ($e^-$) donor. However $ClO_4^-$-removal efficiency was higher when an $e^-$ donor (acetate, thiosulfate, $S^0$, or $F^0$) was added into the batch culture, showing up to 100% removal efficiency. The removal efficiency was various depending on type of $e^-$ donor and site of sampling. When acetate was used as an $e^-$ donor, the highest $ClO_4^-$-removal efficiency was observed among the $e^-$ donors used in this study, suggesting that activity of heterotrophic PRB was dominant. The results of this study provide basic information on natural attenuation of $ClO_4^-$ by river microorganisms. The information can be useful to prepare a strategy to enhance efficiency of $ClO_4^-$ biodegradation for in situ bioremediation.

The Effect of Genenal Ion for Biological Perchlorate Treatment from Zinc Smelting Inorganic Wastewater (아연제련소 무기성폐수 중 간섭이온이 생물학적 퍼클로레이트 처리에 미치는 영향)

  • Kim, Shin-Jo;Lee, Ki-Yong;Lee, Ki-Cheol;Park, Sang-Min;Kwon, Oh-Sang;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.768-774
    • /
    • 2010
  • This study was conducted to provide a technical solution to treat effectively perchlorate from inorganic wastewater of zinc smelting. Despite an inhibition dissolved inorganic substances in the wastewater discharged from zinc smelting has demonstrated with the activity of microbes, biological treatment technology could reduce perchlorate to a satisfactory level under such stressful conditions. It was found that either conductivity or $SO{_4}^{2-}$ concentration of the wastewater was able to be used as the adequate index and the values were $2,450{\mu}S/cm$ and 1,200 ppm respectively. When $SO{_4}^{2-}$ increased from 0 to 16,000 ppm (conductivity : $428{\rightarrow}24,800{\mu}S/cm$), perchlorate biodegradation rate was reduced due to 1/10 times from 0.0365 to 0.0033/h, however, most of perchlorate was removed under the condition of hydraulic retention time (HRT) at 0.5day and mixed liquor volatile suspended solid (MLVSS) at 2,000 ~ 3,000 ppm.

Antiplatelet Activity of 2-(4-Cyanophenyl) amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) (2-(4-시아노페닐) 아미노 -1,4-나프탈렌디온-3-피리디니움 퍼클로레이트 (PQ5)의 항혈소판작용)

  • 김도희;이수환;최소연;문창현;문창현;김대경;유충규
    • YAKHAK HOEJI
    • /
    • v.43 no.6
    • /
    • pp.809-817
    • /
    • 1999
  • The effect of 2-(4-cyanophenyl)amino-1,4-naphthalenedione-3-pyridinium perchlorate (PQ5) on pla-telet aggregation and its action mechanisms were investigated with rat platelet. PQ5 inhibited the platelet aggregation induced by collagen ($6{\;}{\mu\textrm{g}}/ml$), thrombin (0.4 U/ml) and A23187 ($3{\mu}M$) in concentration-dependent manner with $IC_{50}$ values of 5.50, 25.89 and $37.12{\;}{\mu}M$, respectively. PQ5 also significantly reduced the thromboxane $A_2$ (TXA2) formation in a concentration dependent manner. The collagen-induced arachidonic acid (AA) release in [-3H]-AA incorporated platelet, an indication of the phospholipase $A_2$ activity, was decreased by PQ5 pretreatment PQ5 significantly inhibited the activity of thormboxane synthase only at high concentration ($100{\mu}M$), but did not affect the cyclooxygenase activity at all. Collagen-induced ATP release was significantly reduced by PQ5. Calcium-induced platelet aggregation experiment suggests that the elevation of intracellular free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) by collagen stimulation is decreased by the pretreatment of PQ5, which is due to the inhibition of calcium release from intracellular store and influx from outside of the cell. PQ5 did not showed the effect of anticoagulation as prothrombin time (PT) or activated partial thromboplastin time (APTT). Form these results, it is suggested that PQ5 exerts its antiplatelet activity through the inhibition of the intracellular $Ca^{2+}$ mobilization and the decrease of the $TXA_2$ synthesis.

  • PDF