• Title/Summary/Keyword: 퍼지-칼만 필터

Search Result 25, Processing Time 0.024 seconds

A DNA Coding-Based Intelligent Kalman Filter for Tracking a Maneuvering Target (기동표적 추적을 위한 DNA 코딩 기반 지능형 칼만 필터)

  • Lee, Bum-Jik;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.2
    • /
    • pp.131-136
    • /
    • 2003
  • The problem of maneuvering target tracking has been studied in the field of the state estimation over decades. The Kalman filter has been widely used to estimate the states of the target, but in the presence of a maneuver, its performance may be seriously degraded. In this paper, to solve this problem and track a maneuvering target effectively, DNA coding-based intelligent Kalman filter (DNA coding-based IKF) is proposed. The proposed method can overcome the mathematical limits of conventional methods and can effectively track a maneuvering target with only one filter by using the fuzzy logic based on DNA coding method. The tracking performance of the proposed method is compared with those of the adaptive interacting multiple model (AIMM) method and the GA-based IKF in computer simulations.

Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error (가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정)

  • 황진권;송철기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

Localization on WSN Using Fuzzy Model and Kalman Filter (퍼지 모델링과 칼만 필터를 이용한 WSN에서의 위치 측정)

  • Kim, Jong-Seon;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2047-2051
    • /
    • 2009
  • In this paper, we propose the localization method on WSN(Wireless Sensor Network) using fuzzy model and Kalman filter. The proposed method is as follows: First, we estimate the distance of RSSI(Receive Signal Strength Index) by using fuzzy model in order to minimize the distance error. Second, we use a triangulation measurement for estimating the localization. And then, we minimize the localization error using a Kalman filter. Finally, we show the effectiveness and feasibility of the proposed method through some experiments.

Construction of moving object tracking framework with fuzzy clustering, prediction and Hausdorff distance (퍼지 군집, 예측과 하우스돌프 거리를 이용한 이동물체 추적 프레임워크 구축)

  • 소영성
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.128-133
    • /
    • 1998
  • In this paper, we present a parallel framework for tracking moving objects. Parallel framework consists largely of two parts:Search Space Reduction(SSR) and Tracking(TR). SSR is further composed of fuzzy clustering and prediction based on Kalman filter. TR is done by boundarymatching using the Hausdorff distance based on distance transform.

  • PDF

A Study on On-line modeling of Fuzzy System via Extended Kalman Filter (확장 칼만필터를 이용한 온라인 퍼지 모델링 알고리즘에 대한 연구)

  • 김은태
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.5
    • /
    • pp.250-258
    • /
    • 2003
  • In this paper, an explanation regarding on-line identification of a fuzzy system is presented. The fuzzy system to be identified is assumed to be in the type of singleton consequent parts and be represented by a linear combination of fuzzy basis functions. For on-line identification, squared-cosine membership function is introduced to reduce the number of parameters to be identified and make the system consistent and differentiable. Then the parameters of the fuzzy system are identified on-line by the gradient search method and Extended Kalman Filter. Finally, a computer simulation is peformed to illustrate the validity of the suggested algorithms.

Fuzzy Kalman filtering for a nonlinear system (비선형 시스템을 위한 퍼지 칼만 필터 기법)

  • No, Seon-Yeong;Ju, Yeong-Hun;Park, Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.461-464
    • /
    • 2007
  • In this paper, we propose a fuzzy Kalman filtering to deal with a estimation error covariance. The T-S fuzzy model structure is further rearranged to give a set of linear model using standard Kalman filter theory. And then, to minimize the estimation error covariance, which is inferred using the fuzzy system. It can be used to find the exact Kalman gain. We utilize the genetic algorithm for optimizing fuzzy system. The proposed state estimator is demonstrated on a truck-trailer.

  • PDF

Robust Kalman filtering for the TS Fuzzy State Estimation (TS 퍼지 상태 추정에 관한 강인 칼만 필터)

  • Noh, Sun-Young;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1854-1855
    • /
    • 2006
  • In this paper, the Takagi-Sugeno (TS) fuzzy state estimation scheme, which is suggested for a steady state estimator using standard Kalman filter theory with uncertainties. In that case, the steady state with uncertain can be represented by the TS fuzzy model structure, which is further rearranged to give a set of uncertain linear model using standard Kalman filter theory. And then the unknown uncertainty is regarded as an additive process noise. To optimize fuzzy system, we utilize the genetic algorithm. The steady state solutions can be found for proposed linear model then the linear combination is used to derive a global model. The proposed state estimator is demonstrated on a truck-trailer.

  • PDF

Prediction and Avoidance of the Moving Obstacles Using the Kalman Filters and Fuzzy Algorithm (칼만 필터와 퍼지 알고리즘을 이용한 이동 장애물의 위치예측 및 회피에 관한 연구)

  • Joung Won-Sang;Choi Young-Kiu;Lee Sang-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.307-314
    • /
    • 2005
  • In this paper, we propose a predictive system for the avoidance of the moving obstacle. In the dynamic environment, robots should travel to the target point without collision with the moving obstacle. For this, we need the prediction of the position and velocity of the moving obstacle. So, we use the Kalman filer algorithm for the prediction. And for the application of the Kalman filter algorithm about the real time travel, we obtain the position of the obstacle which has the future time using Fuzzy system. Through the computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.

Maneuvering pattern Analysis Algorithm for Maneuvering Target base on FCM (퍼지 클러스터링에 의한 기동표적의 기동패턴 분석 알고리즘)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1924-1925
    • /
    • 2011
  • 본 논문에서는 비선형 기동을 하는 기동표적의 추정된 잡음을 분석하여 표적의 기동패턴을 분석하는 알고리즘을 제시하고자 한다. 기동표적의 추정위치와 측정치에서 발생하는 잡음을 가속도와 순수 잡음으로 분리하고 분리된 성분을 분석하여 표적의 기동 패턴을 인식하고 동시에 추적을 실시하는 알고리즘을 구성한다. 잡음의 분리는 퍼지 클러스터링(FCM : Fuzzy C-means Clustering) 기법을 이용하여 적절한 추정값을 이용한다. 추정된 표적의 속도와 가속도, 잡음을 재 구성하여 기동표적의 기동패턴을 분석하고, 동시에 추적을 실시한다. 위의 과정을 통해 가속도를 분리한 후 비선형성을 지닌 기동표적의 기동패턴을 선형화 하여 칼만필터를 이용 잡음을 분리하고 가속도를 다시 보상하여 추적 알로리즘을 구성한다. 그리고 제안된 알고리즘의 수행 가능성을 보여 주기 위하여 몇 가지 예를 제시하였다.

  • PDF

Intelligent Maneuvering Target Tracking Based on Noise Separation (잡음 구분에 의한 지능형 기동표적 추적기법)

  • Son, Hyun-Seung;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.4
    • /
    • pp.469-474
    • /
    • 2011
  • This paper presents the intelligent tracking method for maneuvering target using the positional error compensation of the maneuvering target. The difference between measured point and predict point is separated into acceleration and noise. K-means clustering and TS fuzzy system are used to get the optimal acceleration value. The membership function is determined for acceleration and noise which are divided by K-means clustering and the characteristics of the maneuvering target is figured out. Divided acceleration and noise are used in the tracking algorithm to compensate computational error. While calculating expected value, the non-linearity of the maneuvering target is recognized as linear one by dividing acceleration and the capability of Kalman filter is kept in the filtering process. The error for the non-linearity is compensated by approximated acceleration. The proposed system improves the adaptiveness and the robustness by adjusting the parameters in the membership function of fuzzy system. Procedures of the proposed algorithm can be implemented as an on-line system. Finally, some examples are provided to show the effectiveness of the proposed algorithm.