• Title/Summary/Keyword: 퍼지 집합수

Search Result 232, Processing Time 0.055 seconds

Optimized Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms (유전자 알고리즘에 의한 최적 Interval Type-2 퍼지 논리 시스템)

  • Kim, Dae-Bok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1851-1852
    • /
    • 2008
  • Type-2 퍼지 논리 집합은 언어적인 불확실성을 다루기 위하여 고안된 Type-1 퍼지 논리 집합의 확장한 것이다. Type-2 퍼지 논리 시스템은 외부 노이즈를 효율적으로 다룰 수 있다. 본 논문에서는 불확실성을 표현하기 위해서 전.후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부 멤버쉽 함수의 정점을 결정하는데 유전자 알고리즘(Genetic Algorithms)으로 멤버쉽 함수의 정점을 결정한다. 제안된 모델은 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 테스트 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치적인 예를 보인다.

  • PDF

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

A New Similarity Measure based on RMF and It s Application to Linguistic Approximation (상대적 소수 함수에 기반을 둔 새로운 유사성 측도와 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.463-468
    • /
    • 2001
  • We propose a new similarity measure based on relative membership function (RMF). In this paper, the RMF is suggested to represent the relativity between fuzzy subsets easily. Since the shape of the RMF is determined according to the values of its parameters, we can easily represent the relativity between fuzzy subsets by adjusting only the values of its parameters. Hence, we can easily reflect the relativity among individuals or cultural differences when we represent the subjectivity by using the fuzzy subsets. In this case, these parameters may be regarded as feature points for determining the structure of fuzzy subset. In the sequel, the degree of similarity between fuzzy subsets can be quickly computed by using the parameters of the RMF. We use Euclidean distance to compute the degree of similarity between fuzzy subsets represented by the RMF. In the meantime, we present a new linguistic approximation method as an application area of the proposed similarity measure and show its numerical example.

  • PDF

A note on the Choquet distance measures for fuzzy number-valued fuzzy numbers (퍼지수치 퍼지수 상의 쇼케이 거리측도에 관한 성질)

  • Jang Lee-Chae;Kim Won-Joo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.365-369
    • /
    • 2006
  • Interval-valued fuzzy sets were suggested for the first time by Gorzalczang(1983) and Turken(1986). Based on this, Wang and Li extended their operations on interval-valued fuzzy numbers. Recently, Hong(2002) generalized results of Wang and Li and extended to interval-valued fuzzy sets with Riemann integral. Using interval-valued Choquet integrals with respect to a fuzzy measure instead of Riemann integrals with respect to a classical measure, we studied some characterizations of interval-valued Choquet distance(2005). In this paper, we define Choquet distance measure for fuzzy number-valued fuzzy numbers and investigate some algebraic properties of them.

  • PDF

Implementation of a Fuzzy PI+PD Controller for DC Servo Systems (직류 서보시스템 제어용 퍼지 PI+PD 제어기 로직회로 구현)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1246-1253
    • /
    • 2009
  • This paper presents derived a calculating form of fuzzy inference, based on decomposition of $\alpha$-level sets. Based on the calculating form it is propose that fuzzy logic circuits of PI+PD controller are a body from fuzzy inference to defuzzificaion in cases where the command variable u directly is generated PWM. The effect of quantization on $\alpha$-levels is investigated. with input/out characteristics of fuzzy controller by simulation. It is concluded that 4 quantization levels are sufficient result for fuzzy control performance of DC servo system. Simulation and experimental results demonstrated that the hardware implementation of the proposed controller can successfully provide good performance on the position control of DC servo system.

Design of Nonlinear Model by Means of Interval Type-2 Fuzzy Logic System (Interval Type-2 퍼지 논리 시스템 기반의 비선형 모델 설계)

  • Kim, In-Jae;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.317-320
    • /
    • 2008
  • 본 논문에서는 Type-1 퍼지 논리 시스템과 Type-2 퍼지 논리 시스템을 설계하고, 불확실한 정보를 갖는 입력 데이터에 대하여 각각의 성능을 비교한다. Type-1 퍼지 논리 시스템은 외부잡음에 민감한 단점을 가지고 있는 반면, Type-2 퍼지 논리 시스템은 불확실한 정보를 잘 표현할 수 있으며 효율적으로 취급한다. 따라서 Type-2 퍼지 논리 시스템을 이용하여 이러한 단점을 극복하고자 2가지의 모델을 설계한다. 첫 번째 모델은 규칙의 전 ${\cdot}$ 후반부가 불확실성을 표현 할 수 없는 Type-1 퍼지 집합으로 구성된 Type-1 퍼지 논리 시스템을 설계한다. 두 번째는 규칙 후반부만 Type-2 퍼지 집합으로 구성한 두가지의 Type-2 퍼지 논리 시스템을 설계한다. 여기서 규칙 전반부의 입력 공간 분할에는 Min-Max 방법의 균등분할을 사용하고, 규칙 후반부 멤버쉽 함수의 중심 결정에는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘을 사용하여 동정한다. 또한 입력 데이터에 인위적으로 가하는 노이즈의 정도에 따른 각각 모델의 성능을 비교한다. 마지막으로 비선형 모델 평가에 주로 사용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 실험을 통하여 불확실한 정보를 다루기에 Type-1 퍼지 논리 시스템 보다 Type-2 퍼지 논리 시스템이 효율적이라는 것을 보인다.

  • PDF

A Part-of-Speech Tagging Using Fuzzy Network (퍼지망을 이용한 한국어 품사 태깅)

  • Kim, Jae-Hoon;Cho, Jeong-Mi;Kim, Chang-Hyun;Seo, Jung-Yun;Kim, Gil-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.593-603
    • /
    • 1993
  • 본 논문은 퍼지 망(Fuzzy Network)외 개념을 도입하여 한국어 단어의 품사 태깅에 관한 새로운 모델을 제시하고자 한다. 한국어 단어의 품사 태깅이란 여러 개의 품사를 가진 단어가 한국어 문장 속에 나타났을 때, 단어의 품사를 올바르게 결정하는 것이다. 여기서 가장 기본적인 문제는 여러 가지의 태그를 포함하고 있는 단어들의 나열을 어떻게 퍼지 망으로 표현하는가 하는 문제이다. 본 논문에서는 한국어 품사를 태깅할 때 사용한 퍼지 망을 정점(vertex)으로 단어 품사의 퍼지 집합을 표현하고, 연결선(edge)으로 품사와 품사간의 퍼지관계를 표현한다. 일단 퍼지망으로 표현되면, 퍼지망에서의 최적의 경로를 찾는 문제와 동일하게 풀 수 있다. 일반적으로 퍼지 망에서 최적의 경로를 찾는 문제는 dynamic programming 방법에 의해서 효과적으로 해결할 수 있다. 약 2만 6천개의 형태소를 실험 데이타로 하여 실험한 결과, 전체적인 품사 태깅 정확률은 95.6%로 비교적 좋은 결과를 보였다. 앞으로 좀 더 세분화된 태그 집합과 정확히 태깅된 실험 데이타로부터 추출된 소속함수를 이용한다면, 더 좋은 결과를 기대할 수 있다.

  • PDF

Design of Feed-Forward Fuzzy Set-based Neural Networks Using Symbolic Encoding and Information Granulation (기호코딩 및 정보입자를 이용한 전방향 퍼지 집합 기반 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2089-2090
    • /
    • 2006
  • 본 논문은 기호 코딩 및 정보입자를 이용한 유전자 알고리즘의 전방향 퍼지 집합 기반 뉴럴네트워크 (Information Granules and Symbolic Encoding-based Fuzzy Set Polynomial Neural Networks ; IG and SE based FSPNN)의 모델 설계를 제안한다. 기존 퍼지 집합기반 다항식 뉴럴네트워크(FSPNN)의 구조 최적화를 위해 이진코딩을 사용하였다. 그러나 이진코딩에서 스트링의 길이가 길면 길수록 인접한 두 수 사이에 발생하는 급격한 비트 차이라는 해밍절벽이 발생하였다. 이에 제안된 모델에서는 해밍절벽의 문제를 해결하기 위해 기호코딩을 사용하였다. 제안된 모델은 각 입력에 대해 MFs의 개수 만큼 규칙을 생성하는 Fuzzy 집합기반 다항식 뉴럴네트워크(FSPNN)를 그대로 사용한다. 그리고 IG based gFSPNN의 평가을 위해 실험적 예제를 통하여 제안된 모델의 성능 및 근사화 능력의 우수함을 보인다.

  • PDF

Comparative Study on Type-2 and Type-1 TSK FLS. (Type-2와 Type-1 TSK FLS의 비교 연구)

  • Ji, Gwang-Hui;O, Seong-Gwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.321-324
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 Mamdani 모델과 함께 가장 널리 사용되는 FLS이다. 본 연구의 Interval Type-2 TSK FLS 모델은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 상수인 1차식을 사용한다. 전반부의 파라미터는 오류역전파 방법(Back-propagation)을 통한 학습으로 결정되고, 후반부 파라미터(계수)들은 Least squre method(LSM)를 사용하여 결정된 값을 사용하여 모델을 구축한다. 본 논문에서는 Type-1 TSK FLS과 Type-2 TSK FLS의 성능을 가스로 공정 데이터를 적용하여 비교 분석한다. 또한 랜덤 화이트 가우시안 노이즈를 추가한 테스트 데이터를 사용하여 노이즈에 대한 성능을 분석한다.

  • PDF

The Optimal Reduction of Fuzzy Rules using a Rough Set (러프집합을 이용한 퍼지 규칙의 효율적인 감축)

  • Roh, Eun-Young;Chung, Hwan-Mook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.881-886
    • /
    • 2007
  • Fuzzy inference has the advantage which can process the ambiguous knowledge. However the associated attributes of fuzzy rules are difficult to determine useful and important rules because the redundant attribute of rules is more than enough. In this paper, we propose a method to minimize the number of rules and preserve the accuracy of inference results by using fuzzy relative cardinality after removing unnecessary attributes from rough set. From the experimental results, we can see the fact that the proposed method provides better results (e.g the number of rules) than those of general rough set with the redundant attributes.