Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.331-333
/
2001
본 논문에서는 퍼지집합의 소속함수에 대한 가중치 함수를 제안한다. 제안하는 가중치 함수는 퍼지집합의 소속함수에 곱해지는 형태로서 적용되어지며, 이것은 소속함수에 대한 사용자의 선호도를 의미한다. 제안하는 가중치 함수의 개념은 기본적으로 소속함수를 사용하는 어떤 퍼지 집합의 응용에서도 적용될 수 있을 것으로 보이나, 본 논문에서는 그 중 한가지 경우로 비퍼지화 방법을 적용 대상으로 선택하였다. 제안하는 가중치 함수가 비퍼지화 방법에 있어서 가지는 의미를 보이며, 기존의 비퍼지화 방법들에서 이러한 가중치 함수의 개념이 어떻게 적용되어 왔는지를 보인다. 또한 기존의 비퍼지화 방법들이 개녀멩 적용되지 않은 형태의 가중치 함수를 선택하여, 비퍼지화 방법에 특정 가중치 함수를 적용하였을 때의 특성 변화를 보인다. 이러한 일반적인 형태의 가중치 함수를 퍼지집합의 소속함수에 적용함으로서, 다양한 형태의 선호도를 퍼지집합의 형태에 반영할 수 있을 것으로 보인다.
표준 매개변수 소속 함수(SPMF)에 기반을 둔 구간 선형 변환 방법(PLTM)을 제안한다. 이는 구간 선형 변환 방법을 사용해서 비 매개변수 소속 함수(NPMF)로 표현된 퍼지 집합이 매개변수 소속 함수(PMF)로 표현된 퍼지 집합으로 변환될 수 있다는 생각에서 유래되었다. 이 경우, 이들 매개변수들은 퍼지 집합의 구조를 결정하기 위한 특징점들 이라고 할 수 있다. 결과적으로 구간 선형 변환 방법은 비 매개변수 소속 함수를 매개변수 소속 함수로 변환해 줌으로써 비 매개변수 소속 함수에 기반을 둔 퍼지 시스템과 비교해 볼 때 퍼지 시스템이 상대적으로 빠르게 처리될 수 있게 한다. 한편, 표준 매개변수 소속 함수들의 전형적인 형태가 소개되고 분석된다. 끝으로, PLTM의 전형적인 응용을 제시하고 수치적인 예를 보여준다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.449-451
/
2003
패턴 분류 문제에서 수치적 속성일 경우 퍼지 적용은 효과적인 결과를 보인다는 것은 많은 연구를 통해 알려졌다. 하지만 퍼지를 적용한 패턴분류의 결과는 소속함수의 모양과 개수에 따라 크게 영향을 받는다는 문제점을 가지고 있다. 따라서 이러한 문제점은 퍼지를 쉽게 응용분야에 적용시키지 못하는 원인이 된다. 따라서 본 논문에서는 자동으로 소속함수를 정의할 수 있는 소속함수 학습 방법을 제안한다. 제안한 방법1)은 Penalty연산과 Reward연산을 통해 소속함수가 학습되고 Coverage연산을 통해 소속함수 개수가 학습된다. 제안된 방법의 가능성을 확인하기 위해 벤치마크 데이터 중 Iris, Appendicitis, Breast Cancer를 사용하여 기존 방법과 비교한다.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.613-615
/
2004
수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만 퍼지 규칙을 이용하는 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점이 있다. 따라서 퍼지 규칙을 쉽게 이해하기 위해서는 가능한 퍼지 규칙의 수를 적게 유지하는 것이 필요하다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수골 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Plma, Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.462-465
/
2004
수치적인 데이터를 분류하기 위한 대표적인 방법은 퍼지 규칙을 사용하는 것이다. 하지만, 이러한 방법은 퍼지 소속 함수를 어떻게 정의하느냐에 따라 퍼지 분류의 성능이 크게 영향을 받는다는 문제점과 퍼지 규칙을 쉽게 이해하기 위해 가능한 퍼지 규칙의 수를 적게 유지해야한다는 문제점이 있다. 본 논문에서는 효과적이며 이해하기 쉬운 퍼지 규칙을 생성하기 위해 기울기 강하법을 기반으로 하는 소속 함수 학습 방법을 제안한다. 에러율을 감소하기 위해 Penalty 연산과 Reward 연산을 통해 소속 함수가 반복적으로 조절된다. 새로운 소속 함수는 Coverage 연산에 의해 생성된다. 또한 이해하기 쉬운 퍼지 규칙을 최적화하기 위해 학습된 소속 함수를 퍼지 결정 트리에 적용한다. 본 논문에서 제안한 알고리즘의 타당성을 확인하기 위해 벤치 마크 데이터인 Iris, Wisconsin Breast Cancer, Pima. Bupa 데이터를 이용하여 실험 결과를 보인다. 실험 결과를 통해 제안한 알고리즘이 기존의 C4.5와 FID 3.1 알고리즘보다 더 효과적이거나 비슷한 성능을 보임을 알 수 있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1998.05a
/
pp.321-326
/
1998
본 논문에서는 정밀 제어와 온-라인 제어를 위하여 유전 알고리즘을 이용한 퍼지-신경망 제어기를 제안하였다. 제안된 제어기의 설계방법은 다음과 같은 3단계의 동조과정으로 구성한다. 1) 퍼지 제어기의 비퍼지화 연산을 신경망을 이용하여 함수근사화 시킨 후, 퍼지-신경망 제어기를 구성한다. 2) 플랜트에 적합한 퍼지 소속함수의 형태를 얻기 위해 유전 알고리즘을 이용하여 근사화된 퍼지 소속함수를 찾는다. 3) 근사화된 초기 퍼지 소속함수를 퍼지-신경망 제어기에 의해 적응학습으로 최적의 퍼지 소속함수를 얻고, 또한 플랜트의 파라미터 변동이나 외부환경의 변화에 대해 적응할 수 있도록 최적의 퍼지 소속함수를 추정한다. 제안된 제어기의 성능을 평가하기 위하여 DC 서보모터의 속도제어에 적용하였다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.191-194
/
2002
기존의 퍼지 제어기는 퍼지 추론시 [0, 1]의 소속도를 갖는 퍼지 소속함수들의 실수연산으로 인하여 연산수행 속도가 저하되는 문제를 가지고 있다 따라서 본 논문에서는 실수연산으로 인하여 야기되었던 속도 저하문제를 해결하기 위한 새로운 퍼지연산 기법으로 실수 값을 갖는 퍼지 소속 함수 값을 정수형 격자(pixel)에 매핑 시켜 정수형 퍼지 소속 함수 값만을 가지고 연산함으로써 기존의 퍼지제어기에 비해 매우 빠른 연산을 수행 할 수 있는 고속 퍼지제어기를 제안한다. 또한 퍼지제어시스템 설계시에 퍼지 입.출력 변수들의 퍼지항들을 입력시킬 수 있는 GUI(Graphic User Interface)를 제공하여 소속함수의 수정 및 퍼지 값 입력시 사용자에게 보다 편리한 환경을 제공한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2009.05a
/
pp.379-382
/
2009
패턴 인식에서 분류기 모형으로 많이 사용되는 퍼지 분류기는 퍼지 소속 함수를 적절히 설정함으로써 보다 향상된 분류 성능을 얻을 수 있다는 장점이 있다. 그러나 일반적으로 함수 설정은 인식문제 분야의 특성이나 해당 전문가의 지식과 주관적 경험을 기반으로 설정되므로 설정된 소속도 함수의 일관성과 객관성을 보장하기가 어려운 문제점을 갖고 있다. 따라서 이 논문에서는 퍼지 분류기의 소속도 함수를 설정하기 위한 객관적 기준을 제시하기 위하여 특징값들 간의 통계적 정보를 이용한 소속도 함수 설정 기법들을 제안하였다. 제안한 기법들을 이용하여 UCI machine learning repository 사이트에서 제공되는 표준 데이터 중에 Iris 데이터 세트를 이용하여 실험하고 그 결과를 비교, 분석하였다.
The fuzzy linear programming(FLP) is the useful approach to many real world problems under uncertainty. This paper deals with a FLP whose objective value is fuzzy. And the right hand sides of convergent equality constraints are fuzzy numbers. We assume that the membership function of the objective value is piecewise linear and those of the right hand side are trapezoidal. Each of these trapezoidal functions can be algebraically replaced with three linear functions. Then the FLP problem is transformed into the Zimmermann's symmetric model. The fuzzy solution based on the max-min rule can be obtained by solving the crisp linear programming problem derived from the symmetric model. A numerical example has illustrated our approach. The application of our approach to the inconsistent linear system can enable generate us to get define the useful and flexible inexact solutions within acceptable tolerance. Further research is required to generalize the membership function.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.15-17
/
1999
사례 기반 추론(Case-Based Reasoning)은 새로운 문제를 해결하기 위해 유사한 기존 문제를 추출하여 그 해결과정을 사용한다. 그러므로, 기존의 문제와의 유사성을 얼마만큼 잘 판별하는가가 매우 중요한 관건이다. 연구된 유사성 판단 방법으로는 퍼지 소속 함수(Fuzzy membership function)를 이용하여 사례마다 각 클래스에 대한 소속 함수 값을 주는 방법이 있다. 이 방법은 퍼지 소속 함수를 어떻게 주는가에 따라 성능이 달라진다. 본 논문에서는 적당한 퍼지 소속 함수를 주기 위하여 Fuzzy C-Means를 사용하는 방법을 제안하였다. 이 방법은 각 클래스에 대한 소속 함수 값을 결정하는데 있어서 좀 더 전체적인 데이터 분포 정보를 이용할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.