• Title/Summary/Keyword: 퍼지 변환 함수

Search Result 63, Processing Time 0.022 seconds

A study on the development of a comprehensive waterfront activity index through complex monitoring in waterfront (하천 친수공간 복합모니터링을 통한 친수활동 종합지수 개발 연구)

  • Jung, Woo Suk;Gwon, Si Yun;Lee, Su Jeong;Kwon, Jae Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.490-490
    • /
    • 2022
  • 국내 대하천 및 중·소규모 하천의 홍수터 공간을 활용하여 체육시설 및 공원 등과 같은 친수 시설물을 조성하여 친수공간으로 활용하고 있으며, 시민들의 친수활동 빈도는 증가추세에 있다. 특히 하천 내에서 수상 레크레이션 활동 등과 같은 다양한 친수활동이 증가하고 있으며, 하천친수에 관한 정보 수요가 급증하고 있으나 체계적인 공급은 미흡한 수준이다. 따라서 본 연구에서는 친수공간 조성 및 유지관리에 대한 측면과 친수공간에서의 쾌적한 친수활동을 위한 정보제공 목적으로 하천 친수공간에서의 복합모니터링을 이용한 친수활동 종합지수를 산정 방법을 개발하고자 하였다. 센서 기반의 시계열 데이터 구축을 위해 하천 수질, 수리인자의 복합모니터링을 진행하였다. 수리인자(수위, 유속, 수면폭 등)와 수질인자(탁도, Chl-a, pH 등), 기상학적 인자(자외선 지수, 미세먼지 등) 등급에 따른 허용기준을 설정하여 각 등급 별로 수리인자의 값을 0~1 사이 값인 소속도로 변환하여 소속도의 합성 및 친수활동 등급을 결정하였다. 최종적으로 수리, 수질, 기상 인자별 소속도 함수 산정을 통한 퍼지합성 이론 기반의 친수활동 종합지수를 산정하였다. 그리고 친수활동 종합지수를 예보하기 위한 모델 적용을 위한 방향성을 정립하였다.

  • PDF

Minimized Stock Forecasting Features Selection by Automatic Feature Extraction Method (자동 특징 추출기법에 의한 최소의 주식예측 특징선택)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.206-211
    • /
    • 2009
  • This paper presents a methodology to 1-day-forecast stock index using the automatic feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by automatically removing the worst input features one by one. CPP$_{n,m}$(Current Price Position of the day n: a percentage of the difference between the price of the day n and the moving average from the day n-1 to the day n-m) and the 2 wavelet transformed coefficients from the recent 32 days of CPP$_{n,m}$ are selected as minimized features using bounded sum of weighted fuzzy membership functions (BSWFMs). For the data sets, from 1989 to 1998, the proposed method shows that the forecast rate is 60.93%.

Fast Algorithm for Polynomial Reconstruction of Fuzzy Fingerprint Vault (지문 퍼지볼트의 빠른 다항식 복원 방법)

  • Choi, Woo-Yong;Lee, Sung-Ju;Chung, Yong-Wha;Moon, Ki-Young
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.33-38
    • /
    • 2008
  • Biometric based authentication can provide strong security guarantee about the identity of users. However, security of biometric data is particularly important as compromise of the data will be permanent. Cancelable biometrics stores a non - invertible transformed version of the biometric data. Thus, even if the storage is compromised, the biometric data remains safe. Cancelable biometrics also provide a higher level of privacy by allowing many templates for the same biometric data and hence non-linkability of user's data stored in different databases. In this paper, we proposed the fast polynomial reconstruction algorithm for fuzzy fingerprint vault. The proposed method needs (k+1) real points to reconstruct the polynomial of degree (k-1). It enhances the speed, however, by $300{\sim}1500$ times according to the degree of polynomial compared with the exhaust search.

Control of Temperature and the Direction of Wind Using Thermal Images and a Fuzzy Control Method (열 영상과 퍼지 제어 기법을 이용한 온도 및 풍향 제어)

  • Kim, Kwang-Baek;Cho, Jae-Hyun;Woo, Young-Woon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.11
    • /
    • pp.2083-2090
    • /
    • 2008
  • In this paper, we propose a method for control of temperature and the direction of wind in an air-cooler using thermal images and fuzzy inference rules in order to achieve energy saving. In a simulation for controlling temperature, a thermal image is transformed to a color distribution image of $300{\times}400$ size to analyze the thermal image. A color distribution image is composed of R, G and B values haying temperature values of Red, Magenta, Yellow, Green, Cyan and Blue. Each color has a temperature value from $24.0^{\circ}C$ to $27.0^{\circ}C$ and a color distribution image is classified into height hierarchies from level 1 to level 10. The classified hierarchies have their peculiar color distributions and temperature values are assigned to each level by temperature values of the peculiar colors. The process for controlling overall balance of temperature and the direction of wind in an indoor space is as follows. Fuzzy membership functions are designed by the direction of wind, duration time, and temperature and height values of a color distribution image to calculate the strength of wind. After then, the strength of wind is calculated by membership values of membership functions.

Preference-based Supply Chain Partner Selection Using Fuzzy Ontology (퍼지 온톨로지를 이용한 선호도 기반 공급사슬 파트너 선정)

  • Lee, Hae-Kyung;Ko, Chang-Seong;Kim, Tai-Oun
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.37-52
    • /
    • 2011
  • Supply chain management is a strategic thinking which enhances the value of supply chain and adapts more promptly for the changing environment. For the seamless partnership and value creation in supply chains, information and knowledge sharing and proper partner selection criteria must be applied. Thus, the partner selection criteria are critical to maintain product quality and reliability. Each part of a product is supplied by an appropriate supply partner. The criteria for selecting partners are technological capability, quality, price, consistency, etc. In reality, the criteria for partner selection may change according to the characteristics of the components. When the part is a core component, quality factor is the top priority compared to the price. For a standardized component, lower price has a higher priority. Sometimes, unexpected case occurs such as emergency order in which the preference may shift on the top. Thus, SCM partner selection criteria must be determined dynamically according to the characteristics of part and its context. The purpose of this research is to develop an OWL model for the supply chain partnership depending on its context and characteristics of the parts. The uncertainty of variable is tackled through fuzzy logic. The parts with preference of numerical value and context are represented using OWL. Part preference is converted into fuzzy membership function using fuzzy logic. For the ontology reasoning, SWRL (Semantic Web Rule Language) is applied. For the implementation of proposed model, starter motor of an automobile is adopted. After the fuzzy ontology is constructed, the process of selecting preference-based supply partner for each part is presented.

Robust and Non-fragile $H_{\infty}$ Decentralized Fuzzy Model Control Method for Nonlinear Interconnected System with Time Delay (시간지연을 가지는 비선형 상호연결시스템의 견실비약성 $H_{\infty}$ 분산 퍼지모델 제어기법)

  • Kim, Joon-Ki;Yang, Seung-Hyeop;Kwon, Yeong-Sin;Bang, Kyung-Ho;Park, Hong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.64-72
    • /
    • 2010
  • In general, due to the interactions among subsystems, it is difficult to design an decentralized controller for nonlinear interconnected systems. In this study, the model of nonlinear interconnected systems is studied via decentralized fuzzy control method with time delay and polytopic uncertainty. First, the nonlinear interconnected system is represented by an equivalent Takagi-Sugeno type fuzzy model. And the represented model can be rewritten as Parameterized Linear Matrix Inequalities(PLMIs), that is, LMIs whose coefficients are functions of a parameter confined to a compact set. We show that the resulting fuzzy controller guarantees the asymptotic stability and disturbance attenuation of the closed-loop system in spite of controller gain variations within a resulted polytopic region by example and simulations.

Design of Heavy Rain Advisory Decision Model Based on Optimized RBFNNs Using KLAPS Reanalysis Data (KLAPS 재분석 자료를 이용한 진화최적화 RBFNNs 기반 호우특보 판별 모델 설계)

  • Kim, Hyun-Myung;Oh, Sung-Kwun;Lee, Yong-Hee
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.473-478
    • /
    • 2013
  • In this paper, we develop the Heavy Rain Advisory Decision Model based on intelligent neuro-fuzzy algorithm RBFNNs by using KLAPS(Korea Local Analysis and Prediction System) Reanalysis data. the prediction ability of existing heavy rainfall forecasting systems is usually affected by the processing techniques of meteorological data. In this study, we introduce the heavy rain forecast method using the pre-processing techniques of meteorological data are in order to improve these drawbacks of conventional system. The pre-processing techniques of meteorological data are designed by using point conversion, cumulative precipitation generation, time series data processing and heavy rain warning extraction methods based on KLAPS data. Finally, the proposed system forecasts cumulative rainfall for six hours after future t(t=1,2,3) hours and offers information to determine heavy rain advisory. The essential parameters of the proposed model such as polynomial order, the number of rules, and fuzzification coefficient are optimized by means of Differential Evolution.

An Emotion Recognition Method using Facial Expression and Speech Signal (얼굴표정과 음성을 이용한 감정인식)

  • 고현주;이대종;전명근
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.799-807
    • /
    • 2004
  • In this paper, we deal with an emotion recognition method using facial images and speech signal. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Emotion recognition using the facial expression is performed by using a multi-resolution analysis based on the discrete wavelet transform. And then, the feature vectors are extracted from the linear discriminant analysis method. On the other hand, the emotion recognition from speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and then the final recognition is obtained from a multi-decision making scheme.

Wavelet-Based Minimized Feature Selection for Motor Imagery Classification (운동 형상 분류를 위한 웨이블릿 기반 최소의 특징 선택)

  • Lee, Sang-Hong;Shin, Dong-Kun;Lim, Joon-S.
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.6
    • /
    • pp.27-34
    • /
    • 2010
  • This paper presents a methodology for classifying left and right motor imagery using a neural network with weighted fuzzy membership functions (NEWFM) and wavelet-based feature extraction. Wavelet coefficients are extracted from electroencephalogram(EEG) signal by wavelet transforms in the first step. In the second step, sixty numbers of initial features are extracted from wavelet coefficients by the frequency distribution and the amount of variability in frequency distribution. The distributed non-overlap area measurement method selects the minimized number of features by removing the worst input features one by one, and then minimized six numbers of features are selected with the highest performance result. The proposed methodology shows that accuracy rate is 86.43% with six numbers of features.

Fuzzy Algorithms to Generate Level Controllers for Nuclear Power Plant Steam Generators (원전 증기 발생기 수위제어용 퍼지 알고리즘)

  • Moon, Byung-Soo;Park, Jae-Chang;Kim, Dong-Hwa;Kim, Byung-Koo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.222-232
    • /
    • 1993
  • In this paper, we present two sets of fuzzy algorithms for the steam generator level control ; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used.

  • PDF