본 논문에서는 시계열 예측 공정의 모델링을 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 기존의 Type-1 퍼지 논리 시스템(Fuzzy Logic System, FLS)은 외부의 노이즈와 같은 불확실성에 민감한 단점이 있다. 그러나 Type 퍼지 논기 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 효과적으로 취급할 수 있다. 여기서 불확실한 정보를 표현하기 위해 규칙의 전 후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부의 경우 HCM 클러스터링을 사용하여 입력 데이터들 간의 거리를 중심으로 멤버쉽 함수를 정의하고, 후반부는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘으로 멤버쉽 함수의 정점을 동조한다. 제안된 모델은 표준 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 특정 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치 석인 예를 보인다.
본 논문에서는 데이터의 특성을 이용한 정보 입자 기반 퍼지 뉴럴 네트워크의 연속적 최적화를 제안한다. 데이터들간의 거리를 중심으로 C-Means 클러스터링 알고리즘을 이용하여 멤버쉽 함수를 정의하고 각 중심의 후반부 중심값을 이용하여 후반부 학습에 적용한다. 구조/파라미터 동정에 있어서 실수 코딩 기반 유전자 알고리즘을 이용하여 입력변수의 수, 입력 변수의 선택, 멤버쉽함수의 수, 후반부 형태와 같은 시스템의 입력 구조와 전반부 멤버쉽함수의 정점 및 학습율과 모멘텀 계수와 같은 파라미터를 최적으로 동정한다. 또한, 구조 연산과 파라미터 연산의 연속적 동조 방법을 이용하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
본 논문은 비선형 시스템의 퍼지모델을 설계하기 위해 데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정을 제안한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. HCM 클러스터링을 통한 데이터 입자는 입력 변수의 개별적인 퍼지 규칙을 형성하고, 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 정의한다. 또한, 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 초기 퍼지 모델을 동정하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽 함수의 수, 그리고 후반부 형태를 결정한다. 데이터 입자에 의한 전반부 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정한다 제안된 모델을 평가하기 위해 수치적인 예를 사용한다.
본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 정보 입자를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
Type-2 퍼지 논리 집합은 언어적인 불확실성을 다루기 위하여 고안된 Type-1 퍼지 논리 집합의 확장한 것이다. Type-2 퍼지 논리 시스템은 외부 노이즈를 효율적으로 다룰 수 있다. 본 논문에서는 불확실성을 표현하기 위해서 전.후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부 멤버쉽 함수의 정점을 결정하는데 유전자 알고리즘(Genetic Algorithms)으로 멤버쉽 함수의 정점을 결정한다. 제안된 모델은 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 테스트 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치적인 예를 보인다.
퍼지 제어기는 유도전동기에 대한 정확한 수학적 모델링의 과정 없이 IF-THEN 규칙으로 제어하는 비선형 제어기로서 과도 응답 특성과 외란에 대한 강인성 면에서 고전 제어 방식보다 우수한 성능을 보여준다. 그러나 입출력 변수의 공간을 균등하게 나누고 일정한 형태의 삼각형 멤버쉽 함수를 이용한 퍼지 제어기는 한정된 성능 이상을 기대할 수없다. 다라서 퍼지 제어기의 성능을 항상시키기 위해서는 멤버쉽 함수의 폭과 위치를 조정하는 것이 필요하다. 본 연구에서는 퍼지 제어기의 각 변수에 할당된 삼각형 멤버쉽 함수의 폭을 유도 전동기의 광범위한 속도에서의 과도 응답 상태에 EK랄 rkqustlzladmfhTJ 유도 전동기의 성능을 향상시키는 방법에 대해 연구하였다.
본 논문은 (1)에 기술된 퍼지 K-nearest neighbor(NN) 알고리즘의 확장인 interval 제2종 퍼지 K-NN을 제안한다. 제안된 방법에서는, 각 패턴벡터의 멤버쉽 값들에 불확실성(Uncertainty)을 할당하는 것에 의해 interval 제2종 퍼지 멤버쉽으로의 확장을 시도한다. 이러한 확장은, K의 결정에 존재하는 불확실성은 다루고, 조정할 수 있게 한다.
본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 데이터 정보를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 이를 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽함수를 최적으로 동정하여 최적의 퍼지 뉴럴 네트워크를 설계한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 연결 가중치는 오류역전파 알고리즘을 이용하여 학습한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.
본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.
본 논문에서는 유전 알고리즘을 사용하여 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기가 교차로 관리를 위해 제시된다. 일반적인 퍼지 교통 제어기들은 사람에 의해 생성된 제어규칙과 멤버쉽함수들을 사용한다. 그러나 이 방식은 퍼지 제어 시스템을 설계하는데 최적의 해를 보장하지 못한다. 유전 알고리즘은 문제 영역에 관한 휴리스틱한 지식을 쉽게 획득하기 어려운 경우에 최적해를 구하는데 유용한 방법이다. 본 논문에서는 퍼지 교통 제어기들의 근사 최적 규칙과 멤버쉽 함수를 자동으로 결정하는데 유전 알고리즘을 사용한다. 제안된 방법의 효과는 교차로망 시뮬레이션을 통하여 입증하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.