• Title/Summary/Keyword: 퍼지 멤버쉽

Search Result 145, Processing Time 0.031 seconds

Application of Type-2 Fuzzy Logic System to Forecasting Time-Series Process (Type-2 퍼지 논리 시스템의 시계열 예측 공정으로 응용)

  • Baek, Jin-Yeol;Oh, Sung-Kwan;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.95-96
    • /
    • 2008
  • 본 논문에서는 시계열 예측 공정의 모델링을 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 기존의 Type-1 퍼지 논리 시스템(Fuzzy Logic System, FLS)은 외부의 노이즈와 같은 불확실성에 민감한 단점이 있다. 그러나 Type 퍼지 논기 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 효과적으로 취급할 수 있다. 여기서 불확실한 정보를 표현하기 위해 규칙의 전 후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부의 경우 HCM 클러스터링을 사용하여 입력 데이터들 간의 거리를 중심으로 멤버쉽 함수를 정의하고, 후반부는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘으로 멤버쉽 함수의 정점을 동조한다. 제안된 모델은 표준 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 특정 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치 석인 예를 보인다.

  • PDF

Successive Optimization of Information Granules-based Fuzzy Neural Networks (정보 입자 기반 퍼지 뉴럴 네트워크의 연속적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1815-1816
    • /
    • 2007
  • 본 논문에서는 데이터의 특성을 이용한 정보 입자 기반 퍼지 뉴럴 네트워크의 연속적 최적화를 제안한다. 데이터들간의 거리를 중심으로 C-Means 클러스터링 알고리즘을 이용하여 멤버쉽 함수를 정의하고 각 중심의 후반부 중심값을 이용하여 후반부 학습에 적용한다. 구조/파라미터 동정에 있어서 실수 코딩 기반 유전자 알고리즘을 이용하여 입력변수의 수, 입력 변수의 선택, 멤버쉽함수의 수, 후반부 형태와 같은 시스템의 입력 구조와 전반부 멤버쉽함수의 정점 및 학습율과 모멘텀 계수와 같은 파라미터를 최적으로 동정한다. 또한, 구조 연산과 파라미터 연산의 연속적 동조 방법을 이용하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Optimal Identification of Data Granules-based Fuzzy Set Fuzzy Model (데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정)

  • Park Keon-Jun;Kim Wan-Su;Oh Sung-Kwun;Kim Hyun-Ki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.317-320
    • /
    • 2005
  • 본 논문은 비선형 시스템의 퍼지모델을 설계하기 위해 데이터 입자 기반 퍼지 집합 퍼지 모델의 최적 동정을 제안한다. 퍼지모델은 주로 경험적 방법에 의해 추출되기 때문에 보다 구체적이고 체계적인 방법에 의한 동정 및 최적화 될 필요성이 요구된다. HCM 클러스터링을 통한 데이터 입자는 입력 변수의 개별적인 퍼지 규칙을 형성하고, 퍼지 공간 분할 및 삼각형 멤버쉽 함수의 초기 정점을 정의한다. 또한, 데이터 입자의 중심을 이용하여 후반부의 구조를 결정한다. 초기 퍼지 모델을 동정하기 위해 유전자 알고리즘을 이용하여 입력 변수의 수, 선택될 입력 변수, 멤버쉽 함수의 수, 그리고 후반부 형태를 결정한다. 데이터 입자에 의한 전반부 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정한다 제안된 모델을 평가하기 위해 수치적인 예를 사용한다.

  • PDF

Optimization of Information Granule-based Fuzzy Neural Network (정보 입자 기반 퍼지 뉴럴 네트워크의 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2093-2094
    • /
    • 2006
  • 본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 정보 입자를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽 파라미터는 유전자 알고리즘을 이용하여 최적으로 동정하여 퍼지 뉴럴 네트워크를 최적화한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Optimized Interval Type-2 Fuzzy Logic System by Means of Genetic Algorithms (유전자 알고리즘에 의한 최적 Interval Type-2 퍼지 논리 시스템)

  • Kim, Dae-Bok;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1851-1852
    • /
    • 2008
  • Type-2 퍼지 논리 집합은 언어적인 불확실성을 다루기 위하여 고안된 Type-1 퍼지 논리 집합의 확장한 것이다. Type-2 퍼지 논리 시스템은 외부 노이즈를 효율적으로 다룰 수 있다. 본 논문에서는 불확실성을 표현하기 위해서 전.후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부 멤버쉽 함수의 정점을 결정하는데 유전자 알고리즘(Genetic Algorithms)으로 멤버쉽 함수의 정점을 결정한다. 제안된 모델은 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 테스트 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치적인 예를 보인다.

  • PDF

Design of the Self-Tuning Fuzzy Controller for an Induction Motor (유도 전동기를 위한 자기 동조퍼지 제어기 설계)

  • 전광호;이한영;박준열
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.236-243
    • /
    • 1998
  • 퍼지 제어기는 유도전동기에 대한 정확한 수학적 모델링의 과정 없이 IF-THEN 규칙으로 제어하는 비선형 제어기로서 과도 응답 특성과 외란에 대한 강인성 면에서 고전 제어 방식보다 우수한 성능을 보여준다. 그러나 입출력 변수의 공간을 균등하게 나누고 일정한 형태의 삼각형 멤버쉽 함수를 이용한 퍼지 제어기는 한정된 성능 이상을 기대할 수없다. 다라서 퍼지 제어기의 성능을 항상시키기 위해서는 멤버쉽 함수의 폭과 위치를 조정하는 것이 필요하다. 본 연구에서는 퍼지 제어기의 각 변수에 할당된 삼각형 멤버쉽 함수의 폭을 유도 전동기의 광범위한 속도에서의 과도 응답 상태에 EK랄 rkqustlzladmfhTJ 유도 전동기의 성능을 향상시키는 방법에 대해 연구하였다.

  • PDF

An Interval Type-2 Fuzzy K-Nearest Neighbor (Interval 제2종 퍼지 K-Nearest Neighbor)

  • 황철;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.271-274
    • /
    • 2002
  • 본 논문은 (1)에 기술된 퍼지 K-nearest neighbor(NN) 알고리즘의 확장인 interval 제2종 퍼지 K-NN을 제안한다. 제안된 방법에서는, 각 패턴벡터의 멤버쉽 값들에 불확실성(Uncertainty)을 할당하는 것에 의해 interval 제2종 퍼지 멤버쉽으로의 확장을 시도한다. 이러한 확장은, K의 결정에 존재하는 불확실성은 다루고, 조정할 수 있게 한다.

Design of Fuzzy Neural Networks Using Data Information and Its Optimization (데이터 정보를 이용한 퍼지 뉴럴 네트워크의 설계와 이의 최적화)

  • Park Geon-Jun;O Seong-Gwon;Kim Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.117-120
    • /
    • 2006
  • 본 논문에서는 입출력 데이터의 특성을 이용하기 위하여 HCM 클러스터링에 의한 데이터 정보를 이용한 퍼지 뉴럴 네트워크의 설계를 제안하고 이를 최적화한다. 대상 시스템의 입출력 데이터를 취득하여 데이터들간의 거리를 중심으로 멤버쉽 함수를 정의하고 각 규칙에 속한 입출력 데이터를 추출하여 후반부 추론에 적용한다. 또한, 앞서 정의된 멤버쉽함수를 최적으로 동정하여 최적의 퍼지 뉴럴 네트워크를 설계한다. 제안된 퍼지 뉴럴 네트워크는 삼각형 멤버쉽 함수를 이용하며, 후반부 추론에는 간략, 선형, 변형된 2차식을 이용한다. 연결 가중치는 오류역전파 알고리즘을 이용하여 학습한다. 제안된 퍼지 뉴럴 네트워크는 표준 모델로서 널리 사용되는 수치적인 예를 통하여 평가한다.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;O, Seong-Gwon;Kim, Hyeon-Gi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.325-328
    • /
    • 2008
  • 본 논문에서는 비선형 모델의 설계를 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 퍼지 논리 시스템의 멤버쉽 함수와 규칙의 구조는 불확실성이 존재하는 언어적인 정보 또는 수치적 데이터를 바탕으로 설계된다. 기존의 Type-1 퍼지 논리 시스템은 외부의 노이즈와 같은 불확실성을 효율적으로 취급할 수 없다. 그러나 Type-2 퍼지 논리 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 불확실성을 효과적으로 다룰 수 있다. 따라서 본 논문에서는 규칙의 전 ${\cdot}$ 후반부가 Type-2 퍼지 집합으로 구성된 Type-2 퍼지 논리 시스템을 설계하고 불확실성의 변화에 대한 비선형 모델의 성능을 비교한다. 여기서 규칙 전반부 멤버쉽 함수의 정점 선택은 C-means 클러스터링 알고리즘을 이용하고, 규칙 후반부 퍼지 집합의 정점 결정에는 입자 군집 최적화(PSO : Particle Swarm Optimization) 알고리즘을 사용한다. 마지막으로, 비선형 모델 평가에 대표적으로 이용되는 가스로 시계열 데이터를 제안된 모델에 적용하고, 입력 데이터에 인위적인 노이즈가 포함되었을 경우 Type-2 퍼지 논리 시스템이 기존의 Type-1 퍼지 논리 시스템보다 우수함을 보인다.

  • PDF

Fuzzy Traffic Controller with Control Rules and Membership Functions Generated by Genetic Algorithms (유전 알고리즘에 의해 생성된 제어규칙과 멤버쉽함수를 갖는 퍼지 교통 제어기)

  • Kim, Byeong-Man;Kim, Jong-Wan;Huh, Nam-Chul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.123-128
    • /
    • 2002
  • A fuzzy traffic controller with the control rules and the membership functions generated by using genetic algorithm is presented for crossroad management. Conventional fuzzy traffic controllers use control rules and membership functions generated by human operators. However, this approach does not guarantee the optimal solution to design fuzzy control system. Genetic algorithm is a good solution for an optimal problem requiring domain-specific knowledge that is often heuristic. In this paper, we use genetic algorithms to automatically determine the near optimal rules and their membership functions of fuzzy traffic controllers. The effectiveness of our method was shown through simulation of crossroad network.