• 제목/요약/키워드: 퍼지 군집화

검색결과 54건 처리시간 0.024초

GPCR 분류에서 ART1 군집화를 위한 퍼지기반 임계값 제어 기법 (Fuzzy-based Threshold Controlling Method for ART1 Clustering in GPCR Classification)

  • 조규철;마용범;이종식
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.167-175
    • /
    • 2007
  • 퍼지이론은 생명정보공학에서 지식을 표현하는데 활용되고 제어시스템 모델을 이해하는데 활용되어 왔다. 본 논문에서는 생명정보학의 응용 프로그램에서 중요한 데이터 분류에 초점을 맞추었다. 최적의 임계값 유도를 위한 GPCR 분류에서 기존의 순차기반 임계값 제어기법은 임계값 결정범위와 최적의 임계값 유도 시간의 문제점을 보였고, 이진기반 임계값 제어기법은 임계값 결정 초기에 시스템의 안정성에 대한 단점이 있었다. 이를 보완하기 위해 우리는 ART1 군집화를 위한 퍼지기반 임계값제어기법을 제안한다. 제안된 방법의 성능을 평가하기 위해 ART1 군집화를 위한 퍼지기반 임계값 제어기법을 구현하여 기존의 순차기반 임계값 제어기법과 이진기반 임계값 제어기법과의 인식률에 대한 구동시간의 변화, 임계값의 변화에 따른 시스템의 구동시간을 측정하였다. 퍼지기반 임계값제어 기법은 GPCR 데이터 분류에서 인식률과 구동시간에 대한 정보를 통해 분류 임계값을 조정하여 높은 인식률과 낮은 구동시간을 지속적으로 유도하여 안정적이고 효과적인 분류 시스템을 만들 수 있었다.

  • PDF

유전 알고리즘에 기반한 퍼지 벌레 검색과 자율 적응 최소-최대 군집화를 이용한 영상 영역화 (Image segmentation using fuzzy worm searching and adaptive MIN-MAX clustering based on genetic algorithm)

  • 하성욱;강대성;김대진
    • 전자공학회논문지S
    • /
    • 제35S권12호
    • /
    • pp.109-120
    • /
    • 1998
  • 본 논문에서는 퍼지 벌레 검색과 최소-최대 군집화 알고리즘에 기반한 영상 영역화 기법을 제안한다. 전체 영상에서 에지 정보는 픽셀들의 공간 관계를 포함하게 되며, 이를 위해 목적 함수들의 인자를 조정하여 퍼지 벌레의 행동을 정의하며, 에지 정보를 검사하는 방법으로 퍼지 벌레값과 최소-최대 노드를 이용한다. 에지 추출을 사용하는 현재의 영역화 방법들은 수학적 모델에 기반한 매스크 정보를 필요로 하며, 매스크 연산으로 인하여 수행 시간도 많이 걸리게 된다. 반면에, 제안하는 알고리즘은 퍼지 벌레의 검색에 따라 단일 연산을 수행하게 된다. 제안하는 알고리즘에서 필요한 범위의 크기를 스스로 결정하고 빠르고 강력한 계산을 수행하기 위해 최적해를 찾는 유전 알고리즘을 도입하고자 한다. 추가적으로, 영상의 그레이-히스토그램에서 퍼지 검색과 군집화를 수행하기 위해 유전 알고리즘을 사용하는 유전 퍼지 벌레 검색과 유전 최소-최대 군집화가 제안된다. 시뮬레이션 결과는 제안된 알고리즘이 히스토그램을 사용하여 적응적으로 양자화되며, 계산 시간과 메모리를 적게 요구하는 단일 검색 방법을 수행한다는 것을 보여준다.

  • PDF

퍼지값을 갖는 데이터에 대한 퍼지 클러스터링 (Fuzzy Clustering for Fuzzy Data1)

  • 이건명
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.27-29
    • /
    • 1998
  • 클러스터링은 데이터의 특성 추출, 데이터의 압축 등을 목적으로 동일 클러스터에 속하는 데이터간에는 유사성이 크도록 하면서 다른 클러스터에 속하는 데이터간에는 유사성이 작도록 데이터를 군집화하는 것이다. 일상에서 발생하는 많은 데이터에는 관측 오류, 불확실성, 주관적인 판정 등으로 인해서 데이터의 속성값이 정확한 값으로 주어지지 않은 경우가 있다. 본 논문에서는 분명한 값뿐만 아니라 퍼지값도 포함한 데이터들에 대해서 퍼지 클러스터링하는 방법을 제안한다.

  • PDF

퍼지 규칙 최적화를 위한 유전자 알고리즘 (A genetic algorithm for generating optimal fuzzy rules)

  • 임창균;정영민;김응곤
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.767-778
    • /
    • 2003
  • 이 논문은 유전자 알고리즘을 이용한 최적의 퍼지 규칙을 만드는 방법을 제시한다. 퍼지 규칙은 첫 번째 단계에서 학습 데이터를 이용해 생성된다. 이 단계에서 퍼지 c-Means 군집화 알고리즘과 군집 유효성을 사용해 구조를 결정하고 퍼지 규칙 수가 되는 군집 수를 결정한다. 첫 번째 단계에서 구조가 결정되면 퍼지규칙의 매개변수들은 유전자 알고리즘을 이용해서 조율된다. 또한, 비대칭 가우시안 소속 함수를 위해 분산 매개변수는 좌ㆍ우값을 따로 관리하여 조율한다. 이 방법은 가중치와 분산 공간에서 유전자 알고리즘을 사용함으로서 전역 최소 쪽으로 수렴하도록 한다.

새로운 퍼지 군집화 알고리즘 (A New Fuzzy Clustering Algorithm)

  • 김재영;박동철;한지호;;송영수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1905_1906
    • /
    • 2009
  • 본 논문은 데이터의 군집화를 효율적으로 수행하기 위하여 새로운 군집화 알고리즘을 제안한다. 제안되는 군집화 알고리즘은 Fuzzy C-Means (FCM)에 기반을 두는데, FCM 알고리즘은 모든 데이터에 대한 거리에 기본을 둔 멤버쉽을 기초로 하기 때문에 잡음에 약한 제약을 지니고 있었다. 이를 개선하기 위하여, 제안되었던 PCM(Probabilistic C-Means), FPCM(Fuzzy PCM), PFCM(Probabilistic FCM) 등 여러가지 알고리즘이 제안 되었다. 그러나 이들 알고리즘들은 초기 파라미터값 설정과 과다한 계산양에 따른 문제가 증가하였으며, 또한 잡음에 어느 정도 민감한 문제점을 지니고 있었다. 이 논문에서는 잡음에 대해 효과적으로 대응할 수 있는 새로운 군집화 알고리즘을 제안하고, 전통적인 군집화를 위한 Iris 데이터에 대한 실험을 통하여 효용성을 확인하였다.

  • PDF

침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성 (Generation of Efficient Fuzzy Classification Rules for Intrusion Detection)

  • 김성은;길아라;김명원
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권6호
    • /
    • pp.519-529
    • /
    • 2007
  • 본 논문에서는 효율적인 침입 탐지를 위해 퍼지 규칙을 이용하는 방법을 제안한다. 제안한 방법은 퍼지 의사결정 트리의 생성을 통해 침입 탐지를 위한 퍼지 규칙을 생성하고 진화 알고리즘을 사용하여 최적화한다. 진화 알고리즘의 효율적인 수행을 위해 지도 군집화를 사용하여 퍼지 규칙을 위한 초기 소속함수를 생성한다. 제안한 방법의 진화 알고리즘은 적합도 평가시 퍼지 규칙(퍼지 의사결정 트리)의 성능과 복잡성을 고려하여 평가한다. 또한 데이타 분할을 이용한 평가와 퍼지 의사결정 트리의 생성과 평가 시간을 줄이는 방법으로 소속정도 캐싱과 zero-pruning을 사용한다. 제안한 방법의 성능 평가를 위해 KDD'99 Cup의 침입 탐지 데이타로 실험하여 기존 방법보다 성능이 향상된 것을 확인하였다. 특히, KDD'99 Cup 우승자에 비해 정확도가 1.54% 향상되고 탐지 비용은 20.8% 절감되었다.

군집화 기반 정상상태 식별을 활용한 시스템 에어컨의 냉매 충전량 분류 모델 개발 (Development of Classification Model on SAC Refrigerant Charge Level Using Clustering-based Steady-state Identification)

  • 김재희;노유정;정종환;최봉수;장석훈
    • 한국전산구조공학회논문집
    • /
    • 제35권6호
    • /
    • pp.357-365
    • /
    • 2022
  • 냉매 오충전은 에어컨에서 빈번하게 발생하는 고장 모드 중 하나로, 적정 충전량 대비 부족 및 과충전 모두 냉방 성능의 저하를 유발하므로 충전된 냉매량을 정확하게 판단하는 것이 중요하다. 본 연구에서는 퍼지 군집화 기법을 통한 정상상태 식별을 통해 냉매 오충전량을 다중 분류하는 모델을 개발하였다. 정상상태 식별을 위해 에어컨 운전 데이터에 대해 이동 평균 간의 차이를 활용한 퍼지 군집화 알고리즘을 적용하였으며, IFDR를 통해 기존 연구된 정상상태 판단 기법들과 식별 결과를 비교하였다. 이후, 시스템 내 상관성을 고려한 mRMR을 이용해 특징을 선택하였으며, 도출된 특징을 이용해 SVM 기반의 다중 분류 모델이 생성되었다. 제안된 방법은 시험 데이터를 통해 만족할 만한 분류 정확도와 강건성을 도출하였다.

특이치 분해와 Fuzzy C-Mean(FCM) 군집화를 이용한 벡터양자화에 기반한 워터마킹 방법 (An Watermarking Method based on Singular Vector Decomposition and Vector Quantization using Fuzzy C-Mean Clustering)

  • 이병희;장우석;강환일
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.267-271
    • /
    • 2007
  • 본 논문은 원본이미지와 은닉이미지의 좋은 압축률과 만족할만한 이미지의 질, 그리고 외부공격에 강인한 이미지은닉의 한 방법으로 특이치 분해와 퍼지 군집화를 이용한 벡터양자화를 이용한 워터마킹 방법을 소개하였다. 실험에서는 은닉된 이미지의 비가시성과 외부공격에 대한 강인성을 증명하였다.

  • PDF

실내 측위 결정을 위한 Fingerprinting Bayesian 알고리즘 (Fingerprinting Bayesian Algorithm for Indoor Location Determination)

  • 이장재;권장우;정민아;이성로
    • 한국통신학회논문지
    • /
    • 제35권6B호
    • /
    • pp.888-894
    • /
    • 2010
  • 무선 네트워크 기반 실내 측위는 측위를 위한 특수 장비를 필요로 하지 않고, Fingerprinting 방식은 무선 네트워크 기반 측위를 위한 기술 중에서 가장 정확도가 높기 때문에 무선 네트워크 fingerprinting 방식이 가장 적당한 실내 측위 방법이다. Fingerprinting 방식은 준비 단계와 실시간 측위 단계로 구성되고 정확한 위치 측정을 위해 보다 효율적이고 정확해야 한다. 본 논문에서는 Fingerprinting 방식에 대한 베이지안 알고리즘으로 강력한 통계적 학습 이론인 베이지안 학습을 결합한 퍼지 군집화를 이용하여 실내 측위를 결정하는 알고리즘을 제안하였다.

효율적인 진화알고리즘을 이용한 적응형 퍼지 분류 규칙 생성 (Generating Adaptive Fuzzy Classification Rules using An Efficient Evolutionary Algorithm)

  • 류정우;김성은;김명원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.769-771
    • /
    • 2005
  • 데이터 특성이 연속적이고 애매할 때 퍼지규칙으로 분류 규칙을 표현하는 것은 매우 유용하고 효과적이다. 그러나 일반적으로 정확하지 않은 데이터 특성에 대해서 소속함수를 결정한다는 것은 어려운 일이다. 본 논문에서는 진화알고리즘을 이용하여 효과적인 퍼지 분류 규칙을 자동으로 생성하는 방법을 제안한다. 제안한 방법에서 규칙의 정확성과 이해성을 고려하여 최적화된 소속함수를 생성하기 위해 진화알고리즘을 사용한다. 먼저 지도 군집화로 진화를 위한 초기 소속함수를 생성한다. 진화알고리즘은 전역적 최적 해를 찾는데 효과적이다. 그러나 시간에 대한 효율성이 낮다. 특히 모델 최적화 문제에서는 개체 평가 단계에서 많은 시간이 소요된다. 따라서 본 논문에서는 전체 데이터를 여러 개의 부분 데이터들로 나누고 개체들은 전체 데이터 대신 매번 부분 데이터를 임의적으로 선택하여 개체를 평가함으로써 수행 시간을 단축시킬 수 있는 진화 방법을 제안한다. 제안한 퍼지 분류 규칙 생성 방법의 타당성을 검증하기 위한 실험 데이터로 UCI에서 제공하는 데이터들을 사용하였으며, 실험 결과는 기존 방법에 비해 평균적으로 더 효과적임을 확인하였다.

  • PDF