Journal of the Korea Institute of Information and Communication Engineering
/
v.7
no.4
/
pp.767-778
/
2003
This paper presents a method for generating optimal fuzzy rules using a genetic algorithm. Fuzzy rules are generated from the training data in the first stage. In this stage, fuzzy c-Means clustering method and cluster validity are used to determine the structure and initial parameters of the fuzzy inference system. A cluster validity is used to determine the number of clusters, which can be the number of fuzzy rules. Once the structure is figured out in the first stage, parameters relating the fuzzy rules are optimized in the second stage. Weights and variance parameters are tuned using genetic algorithms. Variance parameters are also managed with left and right for asymmetrical Gaussian membership function. The method ensures convergence toward a global minimum by using genetic algorithms in weight and variance spaces.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.10a
/
pp.175-178
/
2008
Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.
Journal of the Korea Institute of Information and Communication Engineering
/
v.13
no.3
/
pp.505-513
/
2009
Z. Cao had proposed NFRM(new fuzzy reasoning method) which infers in detail using relation matrix. In spite of the small inference rules, it shows good performance than mamdani's fuzzy inference method. But the most of fuzzy systems are difficult to make fuzzy inference rules in the case of MIMO system. The past days, We had proposed the MIMO fuzzy inference which had extended a Z. Cao's fuzzy inference to handle MIMO system. But many times and effort needed to determine the relation matrix elements of MIMO fuzzy inference by heuristic and trial and error method in order to improve inference performances. In this paper, we propose a MIMO fuzzy inference method with the learning ability witch is used a gradient descent method in order to improve the performances. Through the computer simulation studies for the inverse kinematics problem of 2-axis robot, we show that proposed inference method using a gradient descent method has good performances.
This paper proposes a generating method of fuzzy rules by genetic and descent method (GAGDM),and its applied to classification problems.The number of inference rules and the shapes of membership function in the antecedent part are detemined by applying the genetic algorithm,and the real numbers of the consequent parts are derived by using the descent method.The aim of the proposed method is to generation a minmun set of fuzzy rules that can correctly classify all training patterns,and fiteness function of GA defined by the aim of th proposed method.Finally,in order to demonstrate the effectiveness of the present method,simulation results are shown.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2002.05a
/
pp.170-173
/
2002
본 논문에서는 여러 분야에서 널리 응용되고 있는 적응 뉴로-퍼지 시스템(ANFIS)에서의 효과적인 퍼지 규칙 생성방법을 제안한다. ANFIS의 성능 개선을 위해 구조동정을 수행함에 있어서 전제부 파라미터는 EM(Expectation-Maximization) 알고리즘을 적용하였으며, 파라미터학습은 Jang에 의한 하이브리드 방법을 적용한다. 여기서 초기의 중심과 분산을 구하기 위해 FCM(Fuzzy c-means) 클러스터링 기법을 사용하였다. 이렇게 함으로서 적은 규칙 수를 가지면서도 효율적인 퍼지 규칙을 얻을 수 있도록 하였다. 이들 방법의 유용함을 보이고자 Box-Jenkins의 가스로 데이터에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 보이고자 한다
Proceedings of the Korea Inteligent Information System Society Conference
/
2004.11a
/
pp.195-202
/
2004
일반적으로 운송 컨테이너의 식별자들은 크기나 위치가 정형화되어 있지 않고 외부 잡음으로 인하여 식별자의 형태가 변형될 수 있기 때문에 일정한 규칙으로 찾기는 힘들다. 본 논문에서는 이러한 특성을 고려하여 컨테이너 영상에 대해 Canny 마스크를 이용하여 에지를 검출하고, 검출된 에지 정보에서 영상획득 시 외부 광원에 의해 수직으로 길게 발생하는 잡음들을 퍼지추론 방법을 적용하여 제거한 후에 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화 한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 추출된 개별 식별자의 인식은 개선된 퍼지 RBF 네트워크를 제안하여 적용한다. 제안된 퍼지 RBF 네트워크는 퍼지 C-Means 알고리즘을 중간층으로 적용하고 중간층과 출력층 간의 학습에는 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었고 기존의 퍼지 RBF 네트워크 보다 제안된 퍼지 RBF 네트워크가 컨테이너 식별자의 학습 및 인식에 우수함을 확인하였다.
Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Ju-Sik;Ryu, Jeong-Woong
Proceedings of the KIEE Conference
/
2005.07d
/
pp.2879-2881
/
2005
본 논문에서는 뉴로-퍼지 모델의 전제부 소속함수의 새로운 학습방법을 통한 모델링 기법을 제안한다. 모델의 크기와 학습시간을 줄이는 기법으로 클러스터링 기법을 이용한 모델의 초기 파라미터 결정 방법이 있다. 이는 클러스터링 후 이들 파라미터를 다시 모델에 적용하여 모델을 학습하는 순차적 방법으로써 모델의 학습이 끝난 후의 전제부 파라미터가 클러스터링 파라미터와 연관성을 가지지 못하는 경우가 발생하였다. 또한 오차미분 기반 학습에서는 전제부 초기치가 국부적 최적해에서 벋어나지 못하는 문제점을 가지고 있다. 본 논문에서는 자율적으로 클러스터의 수를 추정하며 이들 파라미터를 최적화하며 이를 이용하여 뉴로-퍼지 모델의 학습을 실시하는 학습기법을 제안하였다. 제안된 방법에서는 기존의 오차미분 기반 학습을 클러스터링 기반 학습으로 확장하였으며 이를 이용한 모델의 성능을 기존의 연구결과와 비교하여 우수성을 보인다.
The Transactions of the Korea Information Processing Society
/
v.2
no.2
/
pp.209-214
/
1995
It is very hard to identify the fuzzy rules and tune the membership functions of the fuzzy reasoning in fuzzy systems modeling .We propose a method which canautomatically identify the fuzzy rules and tune the membership functions of fuzzy reasoning simultaneously using artifical neural network. In this model,fuzzy rules are identified by backpropagation algorithm. The feasibility of the method is simulated by a simple robot manipulator.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.03a
/
pp.99-102
/
1998
본 논문에서는 복잡하고 비선형적인 시스템의 최적 모델링을 우해서 지능형 퍼지-뉴럴네트워크의 최적 모델 구축을 위한 방법을 제안한다. 기본 모델은 퍼지 추론 시스템의 언어적인 규칙생성의 장점과 뉴럴 네트워크의 학습기능을 결합한 FNNs 모델을 사용한다. FNNs 모델의 퍼지 추론부는 간략추론이 사용되고, 학습은 요류 역전파 알고리즘을 사용하여 다른 모델들에 비해 학습속도가 빠르고 수렴능력이 우수하다. 그러나 기본 모델은 주어진 시스템에 대하여 퍼지 공간을 균등하게 분할하여 퍼지 소속을 정의한다. 이것은 비선형 시스템의 모델링에 있어어서 성능을 저하시켜 최적의 모델을 얻기가 어렵다. 논문에서는 주어진 데이터의 특성을 부여한 공간을 설정하기 위하여 클러스터링 알고리즘을 사용한다. 클러스터링 알고리즘은 주어진 시스템에 대하여 상호 연관성이 있는 데이터들끼리 특성을 나누어 몇 개의 클래스를 이룬다. 클러스터링 알고리즘을 사용하여 초기 FNNs 모델의 퍼지 공간을 나누고 소속함수를 정의한다. 또한, 최적화 기법중의 하나로 자연선택과 자연계의 유전자 메카니즘에 바탕을 둔 탐색 알고리즘인 유전자 알고리즘을 사용하여 주\ulcorner 진 모델에 대하여 최적화를 수행한다. 또한 본 연구에서는 학습 및 테스트 데이터의 성능 결과의 상호 균형을 얻기 위한 하중값을 가긴 성능지수가 제시된다.
In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.