• Title/Summary/Keyword: 퍼지표현

Search Result 442, Processing Time 0.029 seconds

The Study on Position Control of a Flexible Robot Manipulator Using Fuzzy Neural Networks (퍼지신경망을 이용한 유연성 로봇 매니퓰레이터의 위치제어에 관한 연구)

  • Yeon Gyu Choo;Han Ho Tack
    • Journal of the Korean Institute of Navigation
    • /
    • v.23 no.4
    • /
    • pp.97-104
    • /
    • 1999
  • 본 논문은 퍼지신경망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 위치제어에 관한 논문이다. 제안된 퍼지신경망 모델은 전건부와 결론부에 퍼지집합을 갖는 퍼지규칙으로 구성된 퍼지모델을 표현하고, 퍼지추론을 수행하는 기능을 가진다. 유연성 로봇 매니퓰레이터에 대한 동적모델을 유도하고, 시뮬레이션을 통해 PID 제어기와 비교 분석하였다. 그 결과 제안된 제어기가 PID 제어기보다도 개선된 성능을 확인하였다.

  • PDF

Robust Fuzzy Observer-Based Output-Feedback Controller for Networked Control Systems (네트워크 제어 시스템의 강인 퍼지 관측기 기반 출력궤환 제어기)

  • Jee, Sung-Chul;Lee, Ho-Jae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.464-469
    • /
    • 2009
  • This paper discusses a robust observer-based output-feedback stabilization of an uncertain Takagi-Sugeno (T-S) fuzzy system in a network. In the networked control system, the input delay occurs inevitably and it is expressed by the Markovian stochastic process. To design robust sampled-data observer-based output-feedback controller, we discretize the T-S fuzzy system and represent as a jump system. Stochastic robust stabilization condition is formulated in terms of linear matrix inequalities.

Development of a Neural Network with Fuzzy Preprosessor (퍼지 전처리기를 가진 신경회로망 모델의 개발)

  • 조성원;황인호
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.43-51
    • /
    • 1995
  • In this paper, we propose a neural network with fuzzy preprocessor not only for improving the classifi¬cation accuracy but also for being able to classify objects whose attribute values do not have clear bound¬aries. The fuzzy input signal representation scheme is included as a preprocessing module. It transforms imprecise input in linguistic form and precisely stated numerical input into multidimensional numerical values. 'The transformed input is processed in the postprocessing module. The experimental results indi-cate the superiority of fuzzy input signal representation scheme in comparison to binary input signal rep¬resentation scheme and decimal input signal representation scheme.

  • PDF

Evaluation of Edge Detector′s Smoothness using Fuzzy Ambiguity (퍼지 애매성을 이용한 에지검출기의 평활화 정도평가)

  • Kim, Tae-Yong;Han, Joon-Hee
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.9
    • /
    • pp.649-661
    • /
    • 2001
  • While the conventional edge detection can be considered as the problem of determining the existence of edges at certain locations, the fuzzy edge modeling can be considered as the problem of determining the membership values of edges. Thus, if the location of an edge is unclear, or if the intensity function is different from the ideal edge model, the degree of edgeness at the location is represented as a fuzzy membership value. Using the concept of fuzzy edgeness, an automatic smoothing parameter evaluation and selection method for a conventional edge detector is proposed. This evaluation method uses the fuzzy edge modeling, and can analyze the effect of smoothing parameter to determine an optimal parameter for a given image. By using the selected parameter we can detect least ambiguous edges of a detection method for an image. The effectiveness of the parameter evaluation method is analyzed and demonstrated using a set of synthetic and real images.

  • PDF

Application of Type-2 Fuzzy Logic System to Forecasting Time-Series Process (Type-2 퍼지 논리 시스템의 시계열 예측 공정으로 응용)

  • Baek, Jin-Yeol;Oh, Sung-Kwan;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.95-96
    • /
    • 2008
  • 본 논문에서는 시계열 예측 공정의 모델링을 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 기존의 Type-1 퍼지 논리 시스템(Fuzzy Logic System, FLS)은 외부의 노이즈와 같은 불확실성에 민감한 단점이 있다. 그러나 Type 퍼지 논기 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 효과적으로 취급할 수 있다. 여기서 불확실한 정보를 표현하기 위해 규칙의 전 후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부의 경우 HCM 클러스터링을 사용하여 입력 데이터들 간의 거리를 중심으로 멤버쉽 함수를 정의하고, 후반부는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘으로 멤버쉽 함수의 정점을 동조한다. 제안된 모델은 표준 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 특정 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치 석인 예를 보인다.

  • PDF

Controller Design for Networked Control Systems With Neutral Type Delay (뉴트럴 타입 시간 지연을 갖는 네트워크 시스템의 제어기 설계)

  • Song, Min-Guk;Park, Jin-Bae;Kim, Jong-Seon;Ju, Yeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.411-414
    • /
    • 2007
  • 본 논문은 뉴트럴 타입 시간 지연을 갖는 네트워크 시스템의 안정도 분석 및 퍼지 제어기 설계에 대해서 논의한다. 먼저 대상이 되는 네트워크 시스템은 TS (Takagi-Sugeno: T-S) 퍼지 모델로 표현 되어진다. 리아프노프-크라조브스키의 안정도 이론을 이용하여 뉴트럴 형태의 시간 지연을 갖는 퍼지 시스템의 안정도를 판별한다. 퍼지 시스템의 안정도 조건을 시간 지연에 종속적인 충분조건으로 제시하고 선형 행렬 부등식의 형태로 표현한다. 선형 행렬 부동식의 해를 구하고 이를 바탕으로 퍼지 제어기의 이득값을 설계한다. 제안된 방법의 효율성과 가능성을 보여주기 위해 한 예제를 포함한다.

  • PDF

The Design of Polynomial RBF Neural Network based on Fuzzy Inference and Its application to Face Recognition (퍼지추론 기반 Polynomial RBF Neural Network 설계와 얼굴 인식으로의 적용)

  • Kim, Gil-Sung;Lee, Kyung-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1889-1890
    • /
    • 2008
  • 본 연구에서는 퍼지 추론 메커니즘에 기반 한 Polynomial RBF Neural Network(p-RBFNN)를 설계하고 얼굴인식 문제로 적용하여 분류기로서의 성능을 분석한다. 제안된 p-RBFNN 구조는 FCM 클러스터링에 기반 한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. p-RBFNN 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 또한 제안된 p-RBFNN을 얼굴인식 문제로 적용하여 성능을 분석한다.

  • PDF

Design of Type-2 Fuzzy Logic Systems Using Genetic Algorithms (유전자 알고리즘을 이용한 타입-2 퍼지논리시스템의 설계)

  • 박세환;이광형
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.220-223
    • /
    • 2000
  • 타입-2 퍼지집합을 이용하여 퍼지논리시스템(Fuzzy Logic System : FLS)을 구현하기 위한 연구들이 R. I John, N. Karnik, J. Mendel 등에 의해 현재 진행되고 있다. 타입-2 집합을 이용한 타입-2 FLS은 기존의 타입-1 FLS보다 제어규칙이나 소속함순가 가지고 있는 불확실성을 표현하는데 있어서 더 효과적이다. 그러나, 타입-2 FLS 역시 타입-1 FLS이 가지고 있는 문제점인 설계시 전문가에게 의존하여 시간과 비용이 많이 소요되고, 제어기의 구성요소들을 효율적으로 생성하기가 어렵다는 문제점을 더욱 심각하게 가지고 있다. 또한, 그 문제점을 해결하기 위한 연구들도 아직 미진한 상태이다. 본 논문에서는 타입-2 FLS의 설계를 위해 유전자 알고리즘을 사용하는 방법을 제안한다. 타입-2 FLS를 설계하기 위해서는 소속함수와 제어규칙을 생성하여야 한다. 본 논문에서는 유전자 알고리즘을 사용하여 타입-2 퍼지제어규칙과 소속함수를 설계하는 방법을 제안한다. 먼저, 유전자 알고리즘에서 사용할 수 있는 유전자의 형태로 타입-2 퍼지제어규칙과 소속함수를 표현하기 위한 인코딩방법을 제안하고, 각각의 염색체를 진화시키기 위한 교차 연산자와 돌연변이 연산자를 정의한다. 그리고, 제안된 방법을 함수근사문제에 적용하여 유효성과 성능을 평가, 검증한다.

  • PDF

A Piecewise Linear Transformation Method based on SPMF and Its Application to Linguistic Approximation (표준 매개변수 소속 함수에 기반을 둔 구간 선형 변환 방법과 언어 근사에의 응용)

  • Choe, Dae-Yeong
    • The KIPS Transactions:PartB
    • /
    • v.8B no.4
    • /
    • pp.351-356
    • /
    • 2001
  • 표준 매개변수 소속 함수(SPMF)에 기반을 둔 구간 선형 변환 방법(PLTM)을 제안한다. 이는 구간 선형 변환 방법을 사용해서 비 매개변수 소속 함수(NPMF)로 표현된 퍼지 집합이 매개변수 소속 함수(PMF)로 표현된 퍼지 집합으로 변환될 수 있다는 생각에서 유래되었다. 이 경우, 이들 매개변수들은 퍼지 집합의 구조를 결정하기 위한 특징점들 이라고 할 수 있다. 결과적으로 구간 선형 변환 방법은 비 매개변수 소속 함수를 매개변수 소속 함수로 변환해 줌으로써 비 매개변수 소속 함수에 기반을 둔 퍼지 시스템과 비교해 볼 때 퍼지 시스템이 상대적으로 빠르게 처리될 수 있게 한다. 한편, 표준 매개변수 소속 함수들의 전형적인 형태가 소개되고 분석된다. 끝으로, PLTM의 전형적인 응용을 제시하고 수치적인 예를 보여준다.

  • PDF

Fuzzy modeling with emphasis on both global fitting and local interpretation : An LMI approach (전역적 성능과 지역적 성능을 동시에 고려하는 TS 퍼지 모델링 : LMI를 이용한 풀이)

  • Kwak, Ki-Ho;Park, Joo-Young
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2989-2991
    • /
    • 2000
  • TS 퍼지 모델은, 복잡한 비선형 시스템을 효과적으로 표현할 수 있는 주요한 근사 모델 중 하나이다. TS 퍼지 모델링을 위한 기존의 학습 방법론들은 대부분 전역적 근사 오차를 최소화하는 것을 목적으로 하는데, 이러한 경우에는 결과로서 얻어지는 75 퍼지 모델의 국소모델들이 근사 대상 시스템의 국소적 특성을 제대로 표현 할 수 없는 상황이 발생할 수 있다. 따라서 본 논문에서는 이러한 특성을 고려하여 새로운 학습 알고리즘을 제시함으로써 전역 지역적 성능을 동시에 향상시킬 수 있는 TS 퍼지 모델을 구하고자 한다 모델을 구하는데 있어서는 LMI를 이용한 풀이를 이용한다. 그리고 간단한 예제를 통하여 그 성능을 입증한다.

  • PDF