본 논문은 퍼지신경망을 이용한 유연성 단일 링크 로봇 매니퓰레이터의 위치제어에 관한 논문이다. 제안된 퍼지신경망 모델은 전건부와 결론부에 퍼지집합을 갖는 퍼지규칙으로 구성된 퍼지모델을 표현하고, 퍼지추론을 수행하는 기능을 가진다. 유연성 로봇 매니퓰레이터에 대한 동적모델을 유도하고, 시뮬레이션을 통해 PID 제어기와 비교 분석하였다. 그 결과 제안된 제어기가 PID 제어기보다도 개선된 성능을 확인하였다.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.4
/
pp.464-469
/
2009
This paper discusses a robust observer-based output-feedback stabilization of an uncertain Takagi-Sugeno (T-S) fuzzy system in a network. In the networked control system, the input delay occurs inevitably and it is expressed by the Markovian stochastic process. To design robust sampled-data observer-based output-feedback controller, we discretize the T-S fuzzy system and represent as a jump system. Stochastic robust stabilization condition is formulated in terms of linear matrix inequalities.
Journal of the Korean Institute of Intelligent Systems
/
v.5
no.1
/
pp.43-51
/
1995
In this paper, we propose a neural network with fuzzy preprocessor not only for improving the classifi¬cation accuracy but also for being able to classify objects whose attribute values do not have clear bound¬aries. The fuzzy input signal representation scheme is included as a preprocessing module. It transforms imprecise input in linguistic form and precisely stated numerical input into multidimensional numerical values. 'The transformed input is processed in the postprocessing module. The experimental results indi-cate the superiority of fuzzy input signal representation scheme in comparison to binary input signal rep¬resentation scheme and decimal input signal representation scheme.
While the conventional edge detection can be considered as the problem of determining the existence of edges at certain locations, the fuzzy edge modeling can be considered as the problem of determining the membership values of edges. Thus, if the location of an edge is unclear, or if the intensity function is different from the ideal edge model, the degree of edgeness at the location is represented as a fuzzy membership value. Using the concept of fuzzy edgeness, an automatic smoothing parameter evaluation and selection method for a conventional edge detector is proposed. This evaluation method uses the fuzzy edge modeling, and can analyze the effect of smoothing parameter to determine an optimal parameter for a given image. By using the selected parameter we can detect least ambiguous edges of a detection method for an image. The effectiveness of the parameter evaluation method is analyzed and demonstrated using a set of synthetic and real images.
본 논문에서는 시계열 예측 공정의 모델링을 위해 Type-2 퍼지 논리 집합을 이용하여 불확실성 문제를 다룬다. 기존의 Type-1 퍼지 논리 시스템(Fuzzy Logic System, FLS)은 외부의 노이즈와 같은 불확실성에 민감한 단점이 있다. 그러나 Type 퍼지 논기 시스템은 불확실한 정보까지 멤버쉽 함수로 표현함으로서 효과적으로 취급할 수 있다. 여기서 불확실한 정보를 표현하기 위해 규칙의 전 후반부 멤버쉽 함수로 삼각형 형태의 Type-2 퍼지 집합을 사용한다. 전반부의 경우 HCM 클러스터링을 사용하여 입력 데이터들 간의 거리를 중심으로 멤버쉽 함수를 정의하고, 후반부는 입자 군집 최적화(Particle Swarm Optimization) 알고리즘으로 멤버쉽 함수의 정점을 동조한다. 제안된 모델은 표준 모델 평가에 주로 사용되는 가스로 시계열 데이터를 적용하고, 특정 데이터로 노이즈에 영향 받은 데이터를 사용하여 수치 석인 예를 보인다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.411-414
/
2007
본 논문은 뉴트럴 타입 시간 지연을 갖는 네트워크 시스템의 안정도 분석 및 퍼지 제어기 설계에 대해서 논의한다. 먼저 대상이 되는 네트워크 시스템은 TS (Takagi-Sugeno: T-S) 퍼지 모델로 표현 되어진다. 리아프노프-크라조브스키의 안정도 이론을 이용하여 뉴트럴 형태의 시간 지연을 갖는 퍼지 시스템의 안정도를 판별한다. 퍼지 시스템의 안정도 조건을 시간 지연에 종속적인 충분조건으로 제시하고 선형 행렬 부등식의 형태로 표현한다. 선형 행렬 부동식의 해를 구하고 이를 바탕으로 퍼지 제어기의 이득값을 설계한다. 제안된 방법의 효율성과 가능성을 보여주기 위해 한 예제를 포함한다.
본 연구에서는 퍼지 추론 메커니즘에 기반 한 Polynomial RBF Neural Network(p-RBFNN)를 설계하고 얼굴인식 문제로 적용하여 분류기로서의 성능을 분석한다. 제안된 p-RBFNN 구조는 FCM 클러스터링에 기반 한 분할 함수를 활성 함수로 사용하며, 다항식 함수로 구성된 연결가중치를 사용함으로서 기존 신경회로망 분류기의 선형적인 특성을 개선한다. p-RBFNN 구조는 언어적 해석관점에서 "If-then"의 퍼지 규칙으로 표현되며 퍼지 추론 메커니즘에 의해 구동된다. 즉 조건부, 결론부, 추론부 세 가지의 기능적 모듈로 나뉘어 네트워크 구조가 형성된다. 조건부는 FCM 클러스터링을 사용하여 입력 공간을 분할하고, 결론부는 분할된 로컬 영역을 다항식 함수로 표현한다. 마지막으로, 네트워크의 최종출력은 추론부의 퍼지추론에 의한다. 또한 제안된 p-RBFNN을 얼굴인식 문제로 적용하여 성능을 분석한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2000.05a
/
pp.220-223
/
2000
타입-2 퍼지집합을 이용하여 퍼지논리시스템(Fuzzy Logic System : FLS)을 구현하기 위한 연구들이 R. I John, N. Karnik, J. Mendel 등에 의해 현재 진행되고 있다. 타입-2 집합을 이용한 타입-2 FLS은 기존의 타입-1 FLS보다 제어규칙이나 소속함순가 가지고 있는 불확실성을 표현하는데 있어서 더 효과적이다. 그러나, 타입-2 FLS 역시 타입-1 FLS이 가지고 있는 문제점인 설계시 전문가에게 의존하여 시간과 비용이 많이 소요되고, 제어기의 구성요소들을 효율적으로 생성하기가 어렵다는 문제점을 더욱 심각하게 가지고 있다. 또한, 그 문제점을 해결하기 위한 연구들도 아직 미진한 상태이다. 본 논문에서는 타입-2 FLS의 설계를 위해 유전자 알고리즘을 사용하는 방법을 제안한다. 타입-2 FLS를 설계하기 위해서는 소속함수와 제어규칙을 생성하여야 한다. 본 논문에서는 유전자 알고리즘을 사용하여 타입-2 퍼지제어규칙과 소속함수를 설계하는 방법을 제안한다. 먼저, 유전자 알고리즘에서 사용할 수 있는 유전자의 형태로 타입-2 퍼지제어규칙과 소속함수를 표현하기 위한 인코딩방법을 제안하고, 각각의 염색체를 진화시키기 위한 교차 연산자와 돌연변이 연산자를 정의한다. 그리고, 제안된 방법을 함수근사문제에 적용하여 유효성과 성능을 평가, 검증한다.
표준 매개변수 소속 함수(SPMF)에 기반을 둔 구간 선형 변환 방법(PLTM)을 제안한다. 이는 구간 선형 변환 방법을 사용해서 비 매개변수 소속 함수(NPMF)로 표현된 퍼지 집합이 매개변수 소속 함수(PMF)로 표현된 퍼지 집합으로 변환될 수 있다는 생각에서 유래되었다. 이 경우, 이들 매개변수들은 퍼지 집합의 구조를 결정하기 위한 특징점들 이라고 할 수 있다. 결과적으로 구간 선형 변환 방법은 비 매개변수 소속 함수를 매개변수 소속 함수로 변환해 줌으로써 비 매개변수 소속 함수에 기반을 둔 퍼지 시스템과 비교해 볼 때 퍼지 시스템이 상대적으로 빠르게 처리될 수 있게 한다. 한편, 표준 매개변수 소속 함수들의 전형적인 형태가 소개되고 분석된다. 끝으로, PLTM의 전형적인 응용을 제시하고 수치적인 예를 보여준다.
TS 퍼지 모델은, 복잡한 비선형 시스템을 효과적으로 표현할 수 있는 주요한 근사 모델 중 하나이다. TS 퍼지 모델링을 위한 기존의 학습 방법론들은 대부분 전역적 근사 오차를 최소화하는 것을 목적으로 하는데, 이러한 경우에는 결과로서 얻어지는 75 퍼지 모델의 국소모델들이 근사 대상 시스템의 국소적 특성을 제대로 표현 할 수 없는 상황이 발생할 수 있다. 따라서 본 논문에서는 이러한 특성을 고려하여 새로운 학습 알고리즘을 제시함으로써 전역 지역적 성능을 동시에 향상시킬 수 있는 TS 퍼지 모델을 구하고자 한다 모델을 구하는데 있어서는 LMI를 이용한 풀이를 이용한다. 그리고 간단한 예제를 통하여 그 성능을 입증한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.