• Title/Summary/Keyword: 퍼지추출기법

Search Result 185, Processing Time 0.026 seconds

Estimation of Concrete Strength Based on Artificial Intelligence Techniques (인공지능 기법에 의한 콘크리트 강도 추정)

  • 김세동;신동환;이영석;노승용;김성환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.7
    • /
    • pp.101-111
    • /
    • 1999
  • This paper presents concrete pattern recognition method to identify the strength of concrete by evidence accumulation with multiple parameters based on artificial intelligence techniques. At first, variance(VAR), zero-crossing(ZCR), mean frequency(MEANF), and autoregressive model coefficient(ARC) and linear cepstrum coefficient(LCC) are extracted as feature parameters from ultrasonic signal of concrete. Pattern recognition is carried out through the evidence accumulation procedure using distance measured with reference parameters. A fuzzy mapping function is designed to transform the distances for the application of the evidence accumulation method. Results(92% successful pattern recognition rate) are presented to support the feasibility of the suggested approach for concrete pattern recognition.

  • PDF

Path Planning and Obstacle Avoidance for Mobile Robot with Vision System Using Fuzzy Rules (비전과 퍼지 규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;채양범;이원창;강근택
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.470-476
    • /
    • 2001
  • This paper presents a new algorithm of path planning and obstacle avoidance for autonomous mobile robots with vision system that is working in unknown environments. Distance variation technique is used in path planning to approach the target and avoid obstacles in work space as well . In this approach, the Sobel operator is employed to detect edges of obstacles and the distances between the mobile robot and the obstacles are measured. Fuzzy rules are used for trajectory planning and obstacle avoidance to improve the autonomy of mobile robots. It is shown by computer simulation that the proposed algorithm is superior to the vector field approach which sometimes traps the mobile robot into some local obstacles. An autonomous mobile robot with single vision is developed for experiments. We also show that the developed mobile robot with the proposed algorithm is navigating very well in complex unknown environments.

  • PDF

Object Classification Algorithm with Multi Laser Scanners by Using Fuzzy Method (퍼지 기법을 이용한 다수 레이저스캐너 기반 객체 인식 알고리즘)

  • Lee, Giroung;Chwa, Dongkyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.5
    • /
    • pp.35-49
    • /
    • 2014
  • This paper proposes the on-road object detection and classification algorithm by using a detection system consisting of only laser scanners. Each sensor data acquired by the laser scanner is fused with a grid map and the measurement error and spot spaces are corrected using a labeling method and dilation operation. Fuzzy method which uses the object information (length, width) as input parameters can classify the objects such as a pedestrian, bicycle and vehicle. In this way, the accuracy of the detection system is increased. Through experiments for some scenarios in the real road environment, the performance of the proposed detection and classification system for the actual objects is demonstrated through the comparison with the actual information acquired by GPS-RTK.

An Emotion Recognition Method using Facial Expression and Speech Signal (얼굴표정과 음성을 이용한 감정인식)

  • 고현주;이대종;전명근
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.6
    • /
    • pp.799-807
    • /
    • 2004
  • In this paper, we deal with an emotion recognition method using facial images and speech signal. Six basic human emotions including happiness, sadness, anger, surprise, fear and dislike are investigated. Emotion recognition using the facial expression is performed by using a multi-resolution analysis based on the discrete wavelet transform. And then, the feature vectors are extracted from the linear discriminant analysis method. On the other hand, the emotion recognition from speech signal method has a structure of performing the recognition algorithm independently for each wavelet subband and then the final recognition is obtained from a multi-decision making scheme.

Face detection using fuzzy color classifier and convex-hull (Fuzzy Color Classifier 와 Convex-hull을 사용한 얼굴 검출)

  • Park, Min-Sik;Park, Chang-U;Kim, Won-Ha;Park, Min-Yong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.69-78
    • /
    • 2002
  • This paper addresses a method to automatically detect out a person's face from a given image that consists of a hair and face view of the person and a complex background scene. Out method involves an effective detection algorithm that exploits the spatial distribution characteristics of human skin color via an adaptive fuzzy color classifier (AFCC), The universal skin-color map is derived on the chrominance component of human skin color in Cb, Cr and their corresponding luminance. The desired fuzzy system is applied to decide the skin color regions and those that are not. We use RGB model for extracting the hair color regions because the hair regions often show low brightness and chromaticity estimation of low brightness color is not stable. After some preprocessing, we apply convex-hull to each region. Consequent face detection is made from the relationship between a face's convex-hull and a head's convex-hull. The algorithm using the convex-hull shows better performance than the algorithm using pattern method. The performance of the proposed algorithm is shown by experiment. Experimental results show that the proposed algorithm successfully and efficiently detects the faces without constrained input conditions in color images.

Structural Segmentation for 3-D Brain Image by Intensity Coherence Enhancement and Classification (명암도 응집성 강화 및 분류를 통한 3차원 뇌 영상 구조적 분할)

  • Kim, Min-Jeong;Lee, Joung-Min;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.13A no.5 s.102
    • /
    • pp.465-472
    • /
    • 2006
  • Recently, many suggestions have been made in image segmentation methods for extracting human organs or disease affected area from huge amounts of medical image datasets. However, images from some areas, such as brain, which have multiple structures with ambiruous structural borders, have limitations in their structural segmentation. To address this problem, clustering technique which classifies voxels into finite number of clusters is often employed. This, however, has its drawback, the influence from noise, which is caused from voxel by voxel operations. Therefore, applying image enhancing method to minimize the influence from noise and to make clearer image borders would allow more robust structural segmentation. This research proposes an efficient structural segmentation method by filtering based clustering to extract detail structures such as white matter, gray matter and cerebrospinal fluid from brain MR. First, coherence enhancing diffusion filtering is adopted to make clearer borders between structures and to reduce the noises in them. To the enhanced images from this process, fuzzy c-means clustering method was applied, conducting structural segmentation by assigning corresponding cluster index to the structure containing each voxel. The suggested structural segmentation method, in comparison with existing ones with clustering using Gaussian or general anisotropic diffusion filtering, showed enhanced accuracy which was determined by how much it agreed with the manual segmentation results. Moreover, by suggesting fine segmentation method on the border area with reproducible results and minimized manual task, it provides efficient diagnostic support for morphological abnormalities in brain.

An Analysis of Selection Factors for Capital Region Ports of Call Using the Fuzzy Theory (퍼지이론을 활용한 수도권항만의 기항지 선택요인 분석에 관한 연구)

  • Yoo, Sung-Jae;Jung, Hyun-Jae;Park, Won-Keun;Yeo, Gi-Tae
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.2
    • /
    • pp.39-57
    • /
    • 2011
  • Recently Incheon Port and Pyeongtak·Dangjin Port called as Capital Region Ports have enjoyed ever-increasing cargo volumes. However, there is a lack of research on this region while plenty of outputs were suggested on mega hub and regional hub ports in terms of shipping companies and stakeholders' port choice criteria. To identify and evaluate the Capital Region Ports, this paper identifies the factors and sub-components influencing their port choice and presents a structure for evaluating them. Based on the literature related to port selection and competition, a regional survey employed Factor Analysis to reveal that 'port facility and link', 'cost and service', 'port hinterland' and 'information service and port operation policy' are the determining factors in these regions. From the overall evaluation using Fuzzy Theory, Port of Incheon Port obtained high score compare to that of Port of Pyeongtak Dangjin.

Video-based Intelligent Unmanned Fire Surveillance System (영상기반 지능형 무인 화재감시 시스템)

  • Jeon, Hyoung-Seok;Yeom, Dong-Hae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.4
    • /
    • pp.516-521
    • /
    • 2010
  • In this paper, we propose a video-based intelligent unmanned fire surveillance system using fuzzy color models. In general, to detect heat or smoke, a separate device is required for a fire surveillance system, this system, however, can be implemented by using widely used CCTV, which does not need separate devices and extra cost. The systems called video-based fire surveillance systems use mainly a method extracting smoke or flame from an input image only. The smoke is difficult to extract at night because of its gray-scale color, and the flame color depends on the temperature, the inflammable, the size of flame, etc, which makes it hard to extract the flame region from the input image. This paper deals with a intelligent fire surveillance system which is robust against the variation of the flame color, especially at night. The proposed system extracts the moving object from the input image, makes a decision whether the object is the flame or not by means of the color obtained by fuzzy color model and the shape obtained by histogram, and issues a fire alarm when the flame is spread. Finally, we verify the efficiency of the proposed system through the experiment of the controlled real fire.

Adaptive prototype generating technique for improving performance of a p-Snake (p-Snake의 성능 향상을 위한 적응 원형 생성 기법)

  • Oh, Seung-Taek;Jun, Byung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2757-2763
    • /
    • 2015
  • p-Snake is an energy minimizing algorithm that applies an additional prototype energy to the existing Active Contour Model and is used to extract the contour line in the area where the edge information is unclear. In this paper suggested the creation of a prototype energy field that applies a variable prototype expressed as a combination of circle and straight line primitives, and a fudge function, to improve p-Snake's contour extraction performance. The prototype was defined based on the parts codes entered and the appropriate initial contour was extracted in each primitive zones acquired from the pre-processing process. Then, the primitives variably adjusted to create the prototype and the contour probability based on the distance to the prototype was calculated through the fuzzy function to create the prototype energy field. This was applied to p-Snake to extract the contour from 100 images acquired from various small parts and compared its similarity with the prototype to find that p-Snake made with the adaptive prototype was about 4.6% more precise than the existing Snake method.

Boundary Detection using Adaptive Bayesian Approach to Image Segmentation (적응적 베이즈 영상분할을 이용한 경계추출)

  • Kim Kee Tae;Choi Yoon Su;Kim Gi Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.3
    • /
    • pp.303-309
    • /
    • 2004
  • In this paper, an adaptive Bayesian approach to image segmentation was developed for boundary detection. Both image intensities and texture information were used for obtaining better quality of the image segmentation by using the C programming language. Fuzzy c-mean clustering was applied fer the conditional probability density function, and Gibbs random field model was used for the prior probability density function. To simply test the algorithm, a synthetic image (256$\times$256) with a set of low gray values (50, 100, 150 and 200) was created and normalized between 0 and 1 n double precision. Results have been presented that demonstrate the effectiveness of the algorithm in segmenting the synthetic image, resulting in more than 99% accuracy when noise characteristics are correctly modeled. The algorithm was applied to the Antarctic mosaic that was generated using 1963 Declassified Intelligence Satellite Photographs. The accuracy of the resulting vector map was estimated about 300-m.