• Title/Summary/Keyword: 퍼지추출기법

Search Result 185, Processing Time 0.034 seconds

Development of Facial Image Based Emotion Recongition System (얼굴 영상 기반 감정 인식 시스템 개발)

  • Kim M. H.;Joo Y. H.;Park J. B.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.433-436
    • /
    • 2005
  • 감정 인식 기술은 사회의 여러 분야에서 요구되고 있는 필요한 기술임에 불구하고 인식 과정의 어려움으로 인해 풀리지 않는 문제로 남아있다. 특히 얼굴 영상을 이용한 감정 인식 기술은 많은 응용이 가능하기 때문에 개발의 필요성이 증대되고 있다. 얼굴 영상을 이용하여 감정을 인식하는 시스템은 매우 다양한 기법들이 사용되는 복합적인 시스템이다. 따라서 이를 설계하기 위해서는 얼굴 영상 분석, 특징 벡터 추출 및 패턴 인식 등 다양한 기법의 연구가 필요하다. 본 논문에서는 이전에 연구된 얼굴 영상 기법들을 기반으로 새로운 감정 인식 시스템을 제안한다. 제안된 시스템은 감정 분석에 적합한 퍼지 이론 기반 퍼지 분류기를 이용하여 감정을 인식한다. 제안된 시스템의 성능을 평가하기 위해 평가데이터 베이스가 구축되었으며, 이를 통해 제안된 시스템을 성능을 평가하였다.

  • PDF

Color Image Retrieval using Quad-tree Segmentation Index (사분트리 분할 인덱스를 이용한 컬러이미지 검색)

  • 오석영;홍성용;나연묵
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.175-177
    • /
    • 2004
  • 최근, 이미지 검색기법에서는 객체추출 방법이나 관심영역 추출방법에 관한 연구가 활발히 이루어지고 있다. 그러나, 컬러 이미지의 경우 색상을 고려한 관심영역 특징추출 방법이나 인덱스 기법은 많이 연구되지 못하고 있다. 따라서, 본 논문에서는 컬러 이미지의 색상을 기반으로 하는 사분트리 분할 인덱스 기법을 제안한다. 사분트리 분할 인덱스 구조는 컬러 이미지의 공간 영역을 계층적인 영역으로 분할하여 각 공간 영역의 평균 색상 갓을 데이터베이스에 저장한다 저장되어진 각 영역의 평균 색상은 검색의 효율성을 높이기 위해 사분트리 인스턴스(Quad-tree distance)를 퍼지 값으로 계산하여 인덱스를 생성한다. 생성된 사분트리 분할 인덱스는 컬러 이미지의 관심영역(Region of Interest)의 색상을 검색할 때 유용하게 사용되며. 검색속도의 향상에 도움을 준다.

  • PDF

Matchmaker: Fuzzy Vault Scheme for Weighted Preference (매치메이커: 선호도를 고려한 퍼지 볼트 기법)

  • Purevsuren, Tuvshinkhuu;Kang, Jeonil;Nyang, DaeHun;Lee, KyungHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.2
    • /
    • pp.301-314
    • /
    • 2016
  • Juels and Sudan's fuzzy vault scheme has been applied to various researches due to its error-tolerance property. However, the fuzzy vault scheme does not consider the difference between people's preferences, even though the authors instantiated movie lover' case in their paper. On the other hand, to make secure and high performance face authentication system, Nyang and Lee introduced a face authentication system, so-called fuzzy face vault, that has a specially designed association structure between face features and ordinary fuzzy vault in order to let each face feature have different weight. However, because of optimizing intra/inter class difference of underlying feature extraction methods, we can easily expect that the face authentication system does not successfully decrease the face authentication failure. In this paper, for ensuring the flexible use of the fuzzy vault scheme, we introduce the bucket structure, which differently implements the weighting idea of Nyang and Lee's face authentication system, and three distribution functions, which formalize the relation between user's weight of preferences and system implementation. In addition, we suggest a matchmaker scheme based on them and confirm its computational performance through the movie database.

A New Intelligent Tracking Algorithm Using Fuzzy Kalman Filter (퍼지 칼만 필터를 이용한 새로운 지능형 추적 알고리즘)

  • Noh Sun-Young;Joo Young-Hoon;Park Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.5
    • /
    • pp.593-598
    • /
    • 2005
  • The standard Kalman filter has been used to estimate the states of the target, but in the presence of a maneuver, its error is occurred and performance may be seriously degraded. To solve this problem, this paper presents a new intelligent tracking algorithm using the fuzzy Kalman filter. In this algorithm, the unknown acceleration is regarded as an additive process noise by using the fuzzy logic based on genetic algorithm(GA) method. And then, the modified filter is corrected by the new update equation method which is a fuzzy system using the relation between the filter residual and its variation. To shows the feasibility of the suggested method with only one filter, the computer simulations system are provided, this method is compared with multiple model method.

Development of tools to support Formal Concept Analysis for Rough and Fuzzy Data (러프 및 퍼지 데이터의 형식개념분석을 지원하기 위한 도구의 개발)

  • Yu-Kyung Kang;Suk-Hyung Hwang;Eung-Hee Kim
    • Annual Conference of KIPS
    • /
    • 2008.11a
    • /
    • pp.687-690
    • /
    • 2008
  • 실세계의 복잡하고 다양한 데이터에 내포된 유용한 정보들을 추출하여 활용하기 위해 다양한 데이터 마이닝 기법들이 제안되고 있다. 최근 각광받기 시작한 개념분석기법(Formal Concept Analysis)은, 주어진 데이터로부터 개념들을 추출하고 그들 사이의 관계를 파악하여 개념계층구조를 구축하기 위한 정형화된 데이터분석 기법이다. 본 논문에서는 개념분석기법을 기반으로 다종다양한 데이터를 분석할 수 있는 기법들(FFCA, RFCA)에 대해서 소개하고, 본 연구에서 개발하고 있는 지원도구와 그 도구를 이용한 실험 결과를 보고한다.

Segmentation of Intima/Adventitia of IVUS Image using Fuzzy Binarization (퍼지 이진화를 이용한 IVUS 영상의 내막/외막 분할)

  • Kim, Kwang Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1514-1519
    • /
    • 2019
  • IVUS is an intra-operative imaging modality that facilitates observing and appraising the vessel wall structure of the human coronary arteries. IVUS is regularly used to locate the atherosclerosis lesions in the coronary arteries. Auto-segmentation of the vessel structure is important to detect the disorder of coronary artery. In this paper, we propose a simple strategy to extract Intima/Adventitia area effectively using fuzzy binarization from intravascular images. The proposed method apply fuzzy binarization to find the adventitia but apply average binarization to locate the intima since they have different homogeneity of pixel intensity comparing with the environment. In this paper, we demonstrate an effective auto-segmentation method for detecting the interior/exterior of the vessel walls by differentiating the fuzzy binarization result and average binarization result from IVUS image. Important statistics such as Intima-Media Thickness (IMT) or volume of a target area can be easily computed from result.

A Fuzzy Agent System to Control the State Transition for an Autonomous Decision Making on Taxi Driving (택시 운행 중 상태변화에 대한 자율적 의사결정을 위한 퍼지 에이전트)

  • Lim, Chun-Kyu;Kang, Byung-Wook
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.413-420
    • /
    • 2005
  • In this paper, we apply software agents, which use fuzzy logic and make autonomous decisions according to state transitions, to car driving environment. We carry out an experiment on artificial intelligent car driving in terms of real-time reactive agents. Inference techniques for constructing real-time reactive agents consider the settings with max-product inference, n-fuzzy rules, and n-associatives ($A_l,\;B_l),\;{\ldots}(A_n,\;B_n$). Then we perform defuzzification processes, extract a central value, and work out inference processes.

Extracting Fuzzy Rules for Classifying Ventricular Tachycardia/Ventricular Fibrillation Based on NEWFM (심실빈맥/심실세동 분류를 위한 NEWFM 기반의 퍼지규칙 추출)

  • Shin, Dong-Kun;Lee, Sang-Hong;Lim, Joon-S.
    • Journal of Internet Computing and Services
    • /
    • v.10 no.2
    • /
    • pp.179-186
    • /
    • 2009
  • This paper presents an approach to classify normal and Ventricular Tachycardia/Ventricular Fibrillation(VT/VF) from the Creighton University Ventricular Tachyarrhythmia DataBase(CUDB) using the neural network with weighted fuzzy membership functions(NEWFM). In the first step, wavelet transform is used for producing input values which are used in the next step. In the second step, two numbers of input features are extracted by phase space reconstruction method and peak extraction method using coefficients produced by wavelet transform in the previous step. NEWFM classifies normal and VT/VF beats using two numbers of input features, and then the accuracy rate is 90.13%.

  • PDF

A Study on Image Segmentation and Tracking based on Fuzzy Method (퍼지기법을 이용한 영상분할 및 물체추적에 관한 연구)

  • Lee, Min-Jung;Jin, Tae-Seok;Hwang, Gi-Hyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.368-373
    • /
    • 2007
  • In recent year s there have been increasing interests in real-time object tracking with image information. This dissertation presents a real-time object tracking method through the object recognition based on neural networks that have robust characteristics under various illuminations. This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. The experiment result shows the usefulness of the proposed method is verified.

Fuzzy Classifier and Bispectrum for Invariant 2-D Shape Recognition (2차원 불변 영상 인식을 위한 퍼지 분류기와 바이스펙트럼)

  • 한수환;우영운
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.3
    • /
    • pp.241-252
    • /
    • 2000
  • In this paper, a translation, rotation and scale invariant system for the recognition of closed 2-D images using the bispectrum of a contour sequence and a weighted fuzzy classifier is derived and compared with the recognition process using one of the competitive neural algorithm, called a LVQ( Loaming Vector Quantization). The bispectrum based on third order cumulants is applied to the contour sequences of an image to extract fifteen feature vectors for each planar image. These bispectral feature vectors, which are invariant to shape translation, rotation and scale transformation, can be used to the represent two-dimensional planar images and are fed into a weighted fuzzy classifier. The experimental processes with eight different shapes of aircraft images are presented to illustrate a relatively high performance of the proposed recognition system.

  • PDF