• Title/Summary/Keyword: 퍼지적합도

Search Result 255, Processing Time 0.028 seconds

Design of Information Appliances Based on User's Preference - in the Case of Information Retrieval Method for Pedestrians' Navigation - (정보기기 디자인에 있어서 사용자의 감성을 고려한 콘텐츠 개발방법 - 보행자의 이동지원을 목적으로 한 감성정보검색을 사례로 -)

  • Kim, Don-Han
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.203-214
    • /
    • 2007
  • This study proposes an information retrieval method reflecting the user's preferences based on the fuzzy set theory to develop information contents which support pedestrian's navigation. Firstly, the research evaluated subjects' preferences on commercial spaces set to a hypothetical destination. Also it surveyed the causal relationship between the visual characteristics and the emotional characteristics to propose methods of Navigation Knowledge Base (NKB). The NKB was composed of three elements; 1. the correlation model between emotional characteristics, 2. the causal relationship between visual characteristics and emotional characteristics, 3. the transformation model between visual characteristics and the physical characteristics. Secondly, this study classified the pedestrian's destination search into 4 types with his or her preferences and the time conditions limited during navigation. For each type it presented the Destination Search Algorithm (DSA). Finally, the research simulated the destination search in 4 navigation types using NKB and DSA and verified the availability of the information retrieval method reflecting pedestrian's preferences. In conclusion, the proposed information search method will be applied to reflect the user's preferences to develop information appliances.

  • PDF

Control Algorithm for Stable Galloping of Quadruped Robots on Irregular Surfaces (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • This paper proposes a control algorithm for quadruped robots moving on irregularly sloped uneven surfaces. Since the body balance of a quadruped robot is controlled by the forces acting on its feet during touchdown, the ground reaction force (GRF) is controlled for stable running. The desired GRF for each foot is generated on the basis of the desired galloping pattern; this GRF is then compared with the actual contact force. The difference between the two forces is used to modify the foot trajectory. The desired force is realized by considering a combination of the rate change of the angular and linear momenta at flight. Then, the amplitude of the GRF to be applied at each foot in order to achieve the desired linear and angular momenta is determined by fuzzy logic. Dynamic simulations of galloping motion were performed using RecurDyn; these simulations show that the proposed control method can be used to achieve stable galloping for a quadruped robot on irregularly sloped uneven surfaces.

Segment-based Buffer Management for Multi-level Streaming Service in the Proxy System (프록시 시스템에서 multi-level 스트리밍 서비스를 위한 세그먼트 기반의 버퍼관리)

  • Lee, Chong-Deuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.11
    • /
    • pp.135-142
    • /
    • 2010
  • QoS in the proxy system are under heavy influence from interferences such as congestion, latency, and retransmission. Also, multi-level streaming services affects from temporal synchronization, which lead to degrade the service quality. This paper proposes a new segment-based buffer management mechanism which reduces performance degradation of streaming services and enhances throughput of streaming due to drawbacks of the proxy system. The proposed paper optimizes streaming services by: 1) Use of segment-based buffer management mechanism, 2) Minimization of overhead due to congestion and interference, and 3) Minimization of retransmission due to disconnection and delay. This paper utilizes fuzzy value $\mu$ and cost weight $\omega$ to process the result. The simulation result shows that the proposed mechanism has better performance in buffer cache control rate, average packet loss rate, and delay saving rate with stream relevance metric than the other existing methods of fixed segmentation method, pyramid segmentation method, and skyscraper segmentation method.

Magnifying Block Diagonal Structure for Spectral Clustering (스펙트럼 군집화에서 블록 대각 형태의 유사도 행렬 구성)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek;Woo, Young-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.9
    • /
    • pp.1302-1309
    • /
    • 2008
  • Traditional clustering methods, like k-means or fuzzy clustering, are prototype-based methods which are applicable only to convex clusters. On the other hand, spectral clustering tries to find clusters only using local similarity information. Its ability to handle concave clusters has gained the popularity recent years together with support vector machine (SVM) which is a kernel-based classification method. However, as is in SVM, the kernel width plays an important role and has a great impact on the result. Several methods are proposed to decide it automatically, it is still determined based on heuristics. In this paper, we proposed an adaptive method deciding the kernel width based on distance histogram. The proposed method is motivated by the fact that the affinity matrix should be formed into a block diagonal matrix to generate the best result. We use the tradition Euclidean distance together with the random walk distance, which make it possible to form a more apparent block diagonal affinity matrix. Experimental results show that the proposed method generates more clear block structured affinity matrix than the existing one does.

  • PDF

Region Segmentation from MR Brain Image Using an Ant Colony Optimization Algorithm (개미 군집 최적화 알고리즘을 이용한 뇌 자기공명 영상의 영역분할)

  • Lee, Myung-Eun;Kim, Soo-Hyung;Lim, Jun-Sik
    • The KIPS Transactions:PartB
    • /
    • v.16B no.3
    • /
    • pp.195-202
    • /
    • 2009
  • In this paper, we propose the regions segmentation method of the white matter and the gray matter for brain MR image by using the ant colony optimization algorithm. Ant Colony Optimization (ACO) is a new meta heuristics algorithm to solve hard combinatorial optimization problem. This algorithm finds the expected pixel for image as the real ant finds the food from nest to food source. Then ants deposit pheromone on the pixels, and the pheromone will affect the motion of next ants. At each iteration step, ants will change their positions in the image according to the transition rule. Finally, we can obtain the segmentation results through analyzing the pheromone distribution in the image. We compared the proposed method with other threshold methods, viz. the Otsu' method, the genetic algorithm, the fuzzy method, and the original ant colony optimization algorithm. From comparison results, the proposed method is more exact than other threshold methods for the segmentation of specific region structures in MR brain image.

A Study on the Extraction of Slope Surface Orientation using LIDAR with respect to Triangulation Method and Sampling on the Point Cloud (LIDAR를 이용한 삼차원 점군 데이터의 삼각망 구성 방법 및 샘플링에 따른 암반 불연속면 방향 검출에 관한 연구)

  • Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.1
    • /
    • pp.46-58
    • /
    • 2016
  • In this study, a LIDAR laser scanner was used to scan a rock slope around Mt. Gwanak and to produce point cloud from which directional information of rock joint surfaces shall be extracted. It was analyzed using two different algorithms, i.e. Ball Pivoting and Wrap algorithm, and four sampling intervals, i.e. raw, 2, 5, and 10 cm. The results of Fuzzy K-mean clustering were analyzed on the stereonet. As a result, the Ball Pivoting and Wrap algorithms were considered suitable for extraction of rock surface orientation. In the case of 5 cm sampling interval, both triangulation algorithms extracted the most number of the patch and patched area.

Admission Consultation Wizard System Based on Multi-Agent (멀티 에이전트 기반의 진학 상담 위저드 시스템)

  • Lee Kwang-Jae;Choi Dong-Oun
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.109-119
    • /
    • 2005
  • The Internet is widely used by general people and the use of Internet is spread to all industrial fields. Especially, cyber education fields have been changed a lot with the Internet application development. One of them is the field of consultation for university admission. As for the business of university admission, there were two ways applicants handed in their applications directly to school which they applied to and to each place to receive applications or sent them through FAX. Recently, highlighted is the Internet environment to receive the application for admission which integrated organically the two ways. In this thesis, I designed and implemented on-line admission consulting system using of multi-agent. The examines can apply for safely and according to their conviction by recommending the university course suitable for their academic aptitude and scores with test KSAT(Scholastic Aptitude Test Administered by the Korean Ministry) and a university grade report on students' record using intelligent multi-agents and through a university course recommending wizard in the process of choosing it.

  • PDF

Genetic Algorithm Based Routing Method for Efficient Data Transmission for Reliable Data Transmission in Sensor Networks (센서 네트워크에서 데이터 전송 보장을 위한 유전자 알고리즘 기반의 라우팅 방법)

  • Kim, Jin-Myoung;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.3
    • /
    • pp.49-56
    • /
    • 2007
  • There are many application areas of wireless sensor networks, such as combat field surveillance, terrorist tracking and highway traffic monitoring. These applications collect sensed data from sensor nodes to monitor events in the territory of interest. One of the important issues in these applications is the existence of the radio-jamming zone between source nodes and the base station. Depending on the routing protocol the transmission of the sensed data may not be delivered to the base station. To solve this problem we propose a genetic algorithm based routing method for reliable transmission while considering the balanced energy depletion of the sensor nodes. The genetic algorithm finds an efficient routing path by considering the radio-jamming zone, energy consumption needed fur data transmission and average remaining energy level. The fitness function employed in genetic algorithm is implemented by applying the fuzzy logic. In simulation, our proposed method is compared with LEACH and Hierarchical PEGASIS. The simulation results show that the proposed method is efficient in both the energy consumption and success ratio of delivery.

  • PDF

Target Classification for Multi-Function Radar Using Kinematics Features (운동학적 특징을 이용한 다기능 레이다 표적 분류)

  • Song, Junho;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.404-413
    • /
    • 2015
  • The target classification for ballistic target(BT) is one of the most critical issues of ballistic defence mode(BDM) in multi-function radar(MFR). Radar responds to the target according to the result of classifying BT and air breathing target(ABT) on BDM. Since the efficiency and accuracy of the classification is closely related to the capacity of the response to the ballistic missile offense, effective and accurate classification scheme is necessary. Generally, JEM(Jet Engine Modulation), HRR(High Range Resolution) and ISAR(Inverse Synthetic Array Radar) image are used for a target classification, which require specific radar waveform, data base and algorithms. In this paper, the classification method that is applicable to a MFR system in a real environment without specific waveform is proposed. The proposed classifier adopts kinematic data as a feature vector to save radar resources at the radar time and hardware point of view and is implemented by fuzzy logic of which simple implementation makes it possible to apply to the real environment. The performance of the proposed method is verified through measured data of the aircraft and simulated data of the ballistic missile.

Design of RBFNN-Based Pattern Classifier for the Classification of Precipitation/Non-Precipitation Cases (강수/비강수 사례 분류를 위한 RBFNN 기반 패턴분류기 설계)

  • Choi, Woo-Yong;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.6
    • /
    • pp.586-591
    • /
    • 2014
  • In this study, we introduce Radial Basis Function Neural Networks(RBFNNs) classifier using Artificial Bee Colony(ABC) algorithm in order to classify between precipitation event and non-precipitation event from given radar data. Input information data is rebuilt up through feature analysis of meteorological radar data used in Korea Meteorological Administration. In the condition phase of the proposed classifier, the values of fitness are obtained by using Fuzzy C-Mean clustering method, and the coefficients of polynomial function used in the conclusion phase are estimated by least square method. In the aggregation phase, the final output is obtained by using fuzzy inference method. The performance results of the proposed classifier are compared and analyzed by considering both QC(Quality control) data and CZ(corrected reflectivity) data being used in Korea Meteorological Administration.