Proceedings of the Korean Institute of Intelligent Systems Conference
/
1998.10a
/
pp.310-316
/
1998
본 논문에서는 기존의 퍼지 제어규칙에비해 좋은 성능을 갖는 T-S(Takagi-Sugeno)퍼지 모델을 자기조직화 지도와 역전파 신경망을 이용하여 표현하고 제어기 구현을 위한 규칙의 자동 생성 방법을 제안한다. 제안된 방법은 신경망에 기초하여 T-S 퍼지 제어 규칙을 포현하므로써 학습 기능을 이용하여 지식 획득을 용이하게 하고, 입력 변수간의 퍼지 관계에 기반 하여 추론이 이루어지므로 각 퍼지 변수에 대한 소속 함수의 정의 과정이 불필요하게 된다. 또한 제어기로 구현되었을 때 규칙의 수나 퍼지화 및 비퍼지화 등이 구성된 추론망을 통하여 자동으로 수행될 수 있다. 때문에 퍼지 시스템의 구현이 쉽게 이루어 질 수 있게 한다. 제안된 방법을 자동차 궤도 안정화 모의 실험에 적용해 봄으로써 추론망이 규칙을 생성하여 타당한 추론을 하게 됨을 확인한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2005.11a
/
pp.110-113
/
2005
본 논문은 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted fuzzy Membership Funcstions, NEWFM)을 이용하여 심전도 신호로부터 조기심실수축(Premature Ventricular Contraction, PVC)을 판별하는 퍼지규칙을 추출하고 있다. NEWFM은 자기적응적(self adaptive) 가중 퍼지소속함수를 가지고 주어진 입력 데이터로부터 학습하여 퍼지규칙을 생성하고 이를 기반으로 정상 파형과 PVC 파형을 구분한다. 분류 성능 평가를 위하여 MIT/BIH 부정맥 데이터 베이스를 사용하였으며, NEWFM의 입력은 심전도의 파형에 웨이블릿 변환을 적용하여 추출된 웨이블릿 계수를 사용하였다. 여기에 비중복면적 분산 측정법을 적용하여 중요도가 낮은 계수를 제거하면서 최소의 m 개 특징입력만을 사용한 하이퍼박스로 단순화 시킨다. 이러한 방법으로 추출된 2개의 웨이블릿 계수를 사용한 퍼지규칙은 $96\%$의 PVC 분류성능을 보여준다.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.371-373
/
2003
웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.
This study investigates the prediction of daily water supply, which is a necessary for the efficient management of water distribution system. Fuzzy neuron, namely artificial intelligence, is a neural network into which fuzzy information is inputted and then processed. In this study, daily water supply was predicted through an adaptive learning method by which a membership function and fuzzy rules were adapted for daily water supply prediction. This study was investigated methods for predicting water supply based on data about the amount of water supplied to the city of Kwangju. For variables choice, four analyses of input data were conducted: correlation analysis, autocorrelation analysis, partial autocorrelation analysis, and cross-correlation analysis. Input variables were (a) the amount of water supplied (b) the mean temperature, and (c)the population of the area supplied with water. Variables were combined in an integrated model. Data of the amount of daily water supply only was modelled and its validity was verified in the case that the meteorological office of weather forecast is not always reliable. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 18.35% and the average error was lower than 2.36%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.
In this paper, we proposed a design method of self-learning fuzzy logic controller using fuzzy neural network. The parameters of membership function in premise are modified by descent method and also consequent parameters by learning mechanism of animal conditioning theory. The proposed method is applied to pole balancing system in order to confirm the feasibility.
Journal of the Korean Institute of Intelligent Systems
/
v.15
no.6
/
pp.688-694
/
2005
In this Paper, we Propose a new neuro-fuzzy modeling using clustering-based learning method. In the proposed clustering method, number of clusters is automatically inferred and its parameters are optimized simultaneously, Also, a neuro-fuzzy model is learned based on clustering information at same time. In the previous modelling method, clustering and model learning are performed independently and have no exchange of its informations. However, in the proposed method, overall neuro-fuzzy model is generated by using both clustering and model learning, and the information of modelling output is used to clustering of input. The proposed method improve the computational load of modeling using Subtractive clustering method. Simulation results show that the proposed method has an effectiveness compared with the previous methods.
Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.2
/
pp.397-406
/
2000
Genetic algorithm is used as a means of search, optimization md machine learning, its structure is simple but it is applied to various areas. And it is about an active and effective controller which can flexibly prepare for changeable circumstances. For this study, research about an action base system evolving by itself is also being considered. There is to have a problem that depended entirely on heuristic knowledge of expert forming membership function and control rule for fuzzy controller design. In this paper, for forming the fuzzy control to perform self-organization, we tuned the membership function to the most optimal using a genetic algorithm(GA) and improved the control efficiency by the self-correction and generation of control rules.
Journal of the Korea Academia-Industrial cooperation Society
/
v.7
no.5
/
pp.830-836
/
2006
In this paper described an auto tuning neuro-fuzzy PID controller based neural network. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. In this paper will design to take advantage of neural network fuzzy theory and pid controller auto toning technique. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. This controller simple structure and computational complexity are less, and also application is easy and performance is excellent in system that is strong and has nonlinearity to system dynamic behaviour change or disturbance. Finally, the proposed auto tuning neuro-fuzzy controller is applied to magnetic levitation. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.
It is difficult to find an appropriate web site because exponentially growing web contains millions of web documents. Personalization of web search can be realized by recommending proper web sites using user profile but more efficient method is needed for estimating preference because user's evaluation on web contents presents many aspects of his characteristics. As user profile has a property of non-linearity, estimation by classifier is needed and combination of classifiers is necessary to anticipate diverse properties. Structure adaptive self-organizing map (SASOM) that is suitable for Pattern classification and visualization is an enhanced model of SOM and might be useful for web mining. Fuzzy integral is a combination method using classifiers' relevance that is defined subjectively. In this paper, estimation of user profile is conducted by using ensemble of SASOM's teamed independently based on fuzzy integral and evaluated by Syskill & Webert UCI benchmark data. Experimental results show that the proposed method performs better than previous naive Bayes classifier as well as voting of SASOM's.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1996.10a
/
pp.172-175
/
1996
In the paper is proposed a hierarchical self-learning fuzzy controller for balancing and position control of an circular inverted pendulum system. To stabilize the pendulum at a specified position, the hierarchical fuzzy controller consists of a supervisory controller, a self-learning fuzzy controller, and a forced disturbance generator. Simulation example shows the effectiveness of the proposed method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.