As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2006.11a
/
pp.297-300
/
2006
본 논문에서는 비선형 기동표적의 추적에 대한 새로운 접근 방식을 소개한다. 이 논문에서는 표적의 가속도를 시변 변수인 표적의 추가적인 잡음으로 두고 각각의 가속도 간격의 정도에 따라 얻어지는 모든 잡음에 대한 변수에 의해 각각의 하부 모델들을 특성화시켰다. 표적의 기동중에 나타나는 가속도를 효과적으로 다루기 위하여, 잡음의 크기가 급격히 증가할 경우 증가분을 가속도로 인식하여 기동표적 관계식에 이용하였다. 또한 모르는 가속도에 따른 시변 변수를 적응적으로 어립잡기는 어렵기 때문에 정밀한 계산을 위하여 퍼지 뉴럴 네트워크와 적응 상호작용 다중모델 기법을 이용하였다. 퍼지 뉴럴 네트워크의 동정을 위해서는 오차 역전파 학습법을 사용하였다. 그리고 제안된 알고리즘의 수행 가능성을 보여주기 위하여 몇 가지 예를 제시하였다.
This paper introduces a risk graph which is one method for determining the SIL as a measure of the effectiveness of signaling system. The purpose of this research is to make up for the weakness of the qualitative determination, which has input value ambiguity and a boundary problem in the SIL range. The fuzzy input valuable consists of consequence, exposure, avoidance and demand rate. The fuzzy inference produces forty eight fuzzy rule by adapting the calibrated risk graph in the IEC 61511. The Max-min composition is utilized for the fuzzy inference. The result of the fuzzy inference is the fuzzy value. Therefore, using the de-fuzzification method, the result should be converted to a crisp value that can be utilized for real projects. Ultimately, the safety requirement for hazard is identified by proposing a SIL result with a tolerable hazard rate. For the validation the results of the proposed method, the fuzzy risk graph model is compared with the safety analysis of the signaling system in CENELEC SC 9XA WG A10 report.
This paper presents a study on the analysis of fire detection system using fuzzy logic with input variables of temperature and smoke density. The input variables for the fuzzy logic algorithm are measured by fire experiment of small scale with temperature detector and smoke detector. The antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire possibility. Also the triangular fuzzy membership function is chosen for input variables and fuzzy rules to simplify computation. In order to calculate fuzzy values of such fuzzy system, a computer program is developed with Matlab based on graphics user interface. The experiment was conducted with paper and ethanol to simulate flaming fire and with plastic and sawdust to model smoldering fire. The results showed that the fire detection system presented here was able to diagnose fire very precisely. With the help of algorithms using fuzzy logic we could distinguish whether fire or not.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.4
/
pp.511-518
/
2009
A lot of methods are proposed to provide services for object informations in distributed domain to satisfy the recent increase of user-centered services. This paper proposed a method called fuzzy drop manager for the service of reliable distribution application domain objects. The proposed system accesses the domain using replica parameter ci,j and access matrix Z, and evaluates the reference relatedness inside the domain using the relatedness, given by the mapping of intra-domain fuzzy relevance, between fuzzy sets. Objects in the domain generated an $\alpha$-level set according to the reference relatedness obtained by applying $\alpha$-level to extend queries. Simulation results showed that the proposed method has better performance than the other methods.
The quantitative evaluation of the stereo graphic projection, the limit equilibrium analysis, the finite difference analysis, the distinct element methocI is a analytical evaluation using many variables. Through the reliability analysis by the point estimation technique, uncertainty of other variables that have an effect on the stability of the rock slo~ was considered. The organized evaluation method of the approximate reasoning concept and using a fuzzy language was developed to confer and analysis the failure factors in planning and constructing the rock slope. Considering the result of the an- alysis, it was demonstrated that stability of entire sections can be evaluated through reliability analysis of point estimation technique. The results of stability evaluation by Fuzzy Approximate Reasoning is generally identical with the results of other existirw; analyses. As mentioned above, general and organized evaluation of special qualities of rock slope is possible using RMR Classification, Stereo Graphic Projection, Limit Equilibriwn Analysis, Finite Difference Analysis, Distinct Element Method, Point Estimation Technique, and Fuzzy Approximate Reasoning.
Journal of the Korean Institute of Intelligent Systems
/
v.8
no.6
/
pp.99-105
/
1998
This paper is to propose the fuzzy regression model using genetic algorithm which is fuzzy nonlinear regression model. Genetic algorithm is used to classify the input data for better fuzzy regression analysis. From this partition. each data can be have the grade of membership function which is belonged to a divided data group. The data group, from optimal partition of the region of each variable, have different fuzzy parameters of fuzzy linear regression model one another. We compound the fuzzy output of each data group so as to obtain the final fuzzy number for a data. We show the efficiency of this method by means of demonstration of a case study.
The Transactions of the Korea Information Processing Society
/
v.5
no.4
/
pp.1066-1073
/
1998
In this paper, we propose a new efficient operator named DBAH (difference between arithmetic mean and harmonic mean) and a technique for extracting sketch features through learning fuzzy inference rules with a neural network. The DBAH operator provide some advantages; sensitivity dependence on local intensities and insensitivity on small rates of intensity change in very dark regions. Also, the proposed fuzzy reasoning technique by a neural network has a good performance in extracting sketch features without human intervention.
Journal of the Korean Institute of Intelligent Systems
/
v.17
no.6
/
pp.799-803
/
2007
In this paper, we propose a new fuzzy membership function for FSVM(Fuzzy Support Vector Machines). We apply a fuzzy membership to each input point of SVM and reformulate SVM into fuzzy SVM (FSVM) such that different input points can make different contributions to the learning of decision surface. The proposed method enhances the SVM in reducing the effect of outliers and noises in data points. This paper compares classification and estimated performance of SVM, FSVM(1), and FSVM(2) model that are getting into the spotlight in time series prediction.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
1999.05a
/
pp.355-360
/
1999
In this paper, we propose a method that optimizes the parameters of fuzzy logic controller : centers and widths of membership functions and scaling factors using genetic algorithm. Before fuzzy logic controller controls a plant in real time, first off it is optimized by genetic algorithm. We select error and error variation between reference trajectory and real output for the input signals of fuzzy controller. We compared and investigated conventional fuzzy control method and proposed method through simulation and experiment using one link manipulator with nonlinear characteristic.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.