• Title/Summary/Keyword: 팽창-압축비

Search Result 176, Processing Time 0.037 seconds

Evaluation of Hardening Properties and Dry Shrinkage of Non-Sintered Binder Based Floor Mortar Utilizing Alpha-Hemihydrate Gypsum (알파반수석고를 활용한 비소성결합재 기반 바닥 모르타르의 경화특성 및 건조수축 평가)

  • Lee, Kye-Hyouk;Kim, Gyu-Yong;Lee, Bo-Kyeong;Kim, Rae-Hwan;Shin, Kyoung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.4
    • /
    • pp.359-365
    • /
    • 2015
  • Floor mortar experiences dry shrinkage by temperature and humidity difference of internal matrix with material type. Also, since floor mortar is influenced by environmental conditions during placing and curing period, cracks are likely to be occurred. In this study, it was evaluated the hardening and dry shrinkage properties of non-sintered binder based floor mortar utilizing alpha-hemihydrate gypsum which has expansibility in order to prevent crack of the floor mortar. It was applied to the construction site, and examined the effects of external environmental conditions on shrinkage deformation and cracking. Different types of slag accelerated initial and final setting in comparison with cement mortar and its compressive strength was satisfied standard compressive strength for floor mortar. Also shrinkage deformation behavior after the initial expansion exhibited a similar tendency with the cement mortar. From the field application result, no crack was found from slag mortar, and it is determined that the slag mortar has better dimensional stability than cement mortar caused by external environment conditions.

A study on the transient characteristics during speed up of inverter heat pump (회전수 상승폭 변화에 따른 인버터열펌프의 비정상 운전특성)

  • 황윤제;김호영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.495-507
    • /
    • 1998
  • The transient characteristics of a 4.0㎾ inverter driven heat pump was investigated by theoretical and experimental studies. The heat pump used in this study consists of a high side scroll compressor and $\Phi$7 compact heat exchangers with two capillary tubes. A series of tests was peformed to examine the transient characteristics of heat pump in heating and cooling mode when the operating speed was varied from 30Hz to 102Hz. One of the major issues that has not been addressed so far is transient characteristics during speed modulation. A cycle simulation model has been developed to predict the cycle performance under frequency rise-up conditions, and the results of theoretical study were compared with the results of experimental study. The theoretical model was driven from mass conservation and energy conservation equations to predict the operation points of refrigerant cycle and the performances at various operating speeds. For transient conditions, the simulated results are in good agreement with the experimental results within 10%. The transient cycle migration of the liquid state refrigerant causes a significant dynamic change in system. Thus, the migration of refrigerant is the most important factor whenever An experimental analysis is performed or A simulation model is developed.

  • PDF

Unsteady Separation Characteristics of Air-Launching Rocket from Full-Geometry Mother Plane (초음속 공중발사를 위한 전기체-로켓의 비정상 분리 유동특성)

  • Ji, Young-Moo;Byun, Yung-Hwan;Park, Jun-Sang;Lee, Jae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.474-482
    • /
    • 2007
  • An analysis is made for flow and rocket motion during a supersonic separation stage of an air-launching rocket(ALR) from the mother plane. Three-dimensional compressible Navier-Stokes equations are numerically solved to analyze the steady/unsteady flow fields around the rocket which is being separated from the mother plane configuration(F-4E Phantom). Simulation results clearly demonstrate the effect of shock-expansion wave interaction around both of the rocket and the mother plane. To predict the behavior of the ALR by the change of the center-of-gravity, three cases of numerical analysis are performed. As a result, a design-guideline of supersonic air-launching rockets for safe separation is proposed.

Theoretical Performance Prediction Program of Pulse Detonation Engines (펄스 데토네이션 엔진 이론 성능 예측 프로그램)

  • Kim, Tae-Young;Kim, Ji-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.552-560
    • /
    • 2014
  • Pulse Detonation Engine(PDE) has been investigated as a next generation propulsion system with the advantages of the higher thermal efficiency by the compression effect and the wide operation ranges from zero speed at ground. In the present study, an efficient theoretical PDE performance prediction program was developed for realistic propellants based on the Endo's theory combining the Chapman-Jouguet detonation theory and expansion process of burnt gas in a constant area tube. The program was validated through the comparison with the experimental data obtained by a ballistic pendulum measurement. PDE performance analyses were carried out for various hydrocarbon fuels and oxidizer compositions by changing the mixture equivalence ratio and initial conditions. Theoretical PDE performance database could be established as a result of the analyses.

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, You-Il;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.629-634
    • /
    • 2011
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. The two possible mission profiles were established to decide the engine requirements and Design Point, and Design Point analysis was performed with the values of design parameter which were obtained from similar class engines and technical references. The results showed that Specific Net Thrust is 2599.4 ft/s and Specific Fuel Consumption is 1.483 lb/($lb^*h$) at the flight condition of Sea Level, Mach 1.2. It was also found through the performance analysis on the two possible mission profiles that major design parameters for determining Net Thrust were Turbine Inlet Temperature for low supersonic flight speed and Compressor Exit Temperature for high supersonic flight speed. In addition, simple turbojet engine with axial compressor, straight annular combustor, axial turbine and fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost light engine.

  • PDF

Prestudy on Expendable Turbine Engine for High-Speed Vehicle (초고속 비행체용 소모성 터빈엔진 사전연구)

  • Kim, YouIl;Hwang, KiYoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • A prestudy on expendable turbine engine for high-speed vehicle was conducted. After two possible mission profiles were established to decide the engine requirements, design point analysis was performed with the values of design parameter which were obtained from similar class engines, references, etc. The results showed that specific net thrust and specific fuel consumption with turbine inlet temperature of 3,600 R are 2,599.4 ft/s and 1.483 lb/(lb*h) respectively at the flight condition of sea level, Mach 1.2. It was also found that major design parameters for determining maximum net thrust were turbine inlet temperature for low supersonic and transonic flight speed and compressor exit temperature for high supersonic flight speed from the results of performance analysis on the two possible mission profiles. In addition, simple turbojet engine with an axial compressor, a straight annular combustor, an one stage axial turbine and a fixed throat area converge-diverge exhaust nozzle was proposed as the configuration of simple low cost lightweight turbine engine.

Axial Behavior of Concrete Cylinders Confined with FRP Wires (FRP 와이어 보강 콘크리트 공시체의 압축거동)

  • Cho, Baiksoon;Lee, Jong-Han;Choi, Eunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1765-1775
    • /
    • 2013
  • The application of FRP wire as a mean of improving strength and ductility capacity of concrete cylinders under axial compressive load through confinement is investigated experimentally in this study. An experimental investigation involves axial compressive test of three confining amounts of FRP wire and three concrete compressive strengths. The effectiveness of FRP wire confinement on the concrete microstructure were examined by evaluating the internal concrete damage using axial, circumferential, and volumetric strains. The axial stress-strain relations of FRP wire confined concrete showed bilinear behavior with transition region. It showed strain-hardening behavior in the post-cracking region. The load carrying capacity was linearly increased with increasing of the amount of FRP wire. The ultimate strength of the 35 MPa specimen confined with 3 layer of FRP wire was increased by 286% compared to control one. When the concrete were effectively confined with FRP wire, horizontal cracks were formed by shearing. It was developed from sudden expansion of the concrete due to confinement ruptures at one side while the FRP wire was still working in hindering expansion of concrete at the other side of the crack. The FRP wire failure strains obtained from FRP wire confined concrete tests were 55~90%, average 69.5%, of the FRP wire ultimate uniaxial tensile strain. It was as high as any other FRP confined method. The magnitude of FRP wire failure strain was related to the FRP wire effectiveness.

Undrained Behavior of Clay-Sand Mixtures under Triaxial Loading

  • Shin, Joon-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.71-81
    • /
    • 1999
  • A study on the undrained behavior of isotropically consolidated clay-sand mixtures was carried out using the automated triaxial testing apparatus. Overconsolidated ratio, effective mean pressure and clay content( up to 20% bentonite) were the factors varied in the experimental investigation. Undrained behavior(strength and pore water pressure generation during shear in triaxial loading) depends upon overconsolidation ratio, confining pressure and clay content. Significant changes in undrained compression characteristics occurred at around 20% of clay contents in the sand. The test results were analyzed and their behaviors were interpreted within the framework of plasticity constitutive model for clay-sand mixtures. Possible physical bases for the proposed forms are discussed. Validation of the applied model using the laboratory results is also given.

  • PDF

Mechanical Constitutive Model for Frozen Soil (동토지반에 대한 역학적 구성모델)

  • Shin, Ho-Sung;Kim, Ji-Min;Lee, Jang-Guen;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.5
    • /
    • pp.85-94
    • /
    • 2012
  • Recently, growing interests in frozen ground have stimulated us to advance fundamental theories and systematic researches on soil behavior under freezing conditions. Unlike the well-established soil mechanics theory, temperature variation and phase change of pore-water cause water migration to cold side, ground heaving, sharp increase in earth pressure, etc., which bring about serious problems in frozen geotechnical structures. Elasto-plastic mechanical constitutive model for frozen/unfrozen soil subjected to fully coupled THM phenomena is formulated based on a new stress variable that is continuous in frozen-unfrozen transitional regions. Numerical simulations are conducted to discuss numerical reliability and applicability of the developed constitutive model: one-dimensional heaving pressure, tri-axial compression test, and one-side freezing tests. The numerical results show that developed model can efficiently describe complex THM phenomena of frozen soil, and they can be utilized to analyze and design the geotechnical structures under freezing conditions, and predict their long-term behavior.

The Effect of Cement Milk Grouting on the Deformation Behavior of Artifcial Rock Joints (시멘트현탁액 주입에 의한 신선한 암석절리의 역학적 특성 변화)

  • 김태혁;이정인
    • Tunnel and Underground Space
    • /
    • v.10 no.2
    • /
    • pp.180-195
    • /
    • 2000
  • Grouting has been practiced as a reliable technique to improve the mechanical properties of rock mass. But, the study of ground improvement by greeting is rare especially in jointed rock mass. In this study, joint compression test and direct shear test were performed on pure rock joint and cement milk grouted rock joint to examine the grouting effect on the property of rock joint. In the pure rock joint compression test, joint closure varied non-linearly with normal stress. But after cement milk grouting, the normal deformation characteristics of the joint was linear at the low normal stress level. As normal stress increased. deformation of the sample rapidly increased due to the stress concentration at the joint asperities. Peak shear strength of the grouted joint in low normal stress was higher than that of non-grouted joint due to the cohesion, decreased exponetially as the grout thickness increased. Thus after cement milk grouting, the failure envelope modified to a curve that has cohesion due to grout material hydration with decreased friction angle. Shear stiffness and peak dilation angle of the grouted joint decreased as the grout thickness increased. The peak shear strength from the direct shear test on grouted rock joint was represented by an empirical equation as a fuction of grout thickness and roughness mean amplitude.

  • PDF