• Title/Summary/Keyword: 팽창수축

Search Result 309, Processing Time 0.027 seconds

Dental Restorative Composite Resins Containing Asymmetric Spiro Orthocarbonate for the Reduction of Volumetric Shrinkage (비대칭 스파이로 오르토카보네이트가 포함된 저수축 치아 수복재)

  • 황미선;김창근
    • Polymer(Korea)
    • /
    • v.28 no.4
    • /
    • pp.321-327
    • /
    • 2004
  • The applications of dental restorative composite resins containing 2,2-bis [4-(2-hydroxy-3-me-thacryloyloxy propoxy) phenyl] propane as a base resin, and triethylene glycol dimethacrylate, as a diluent, were often limited in dentistry due to the relatively large amount of volumetric shrinkage that occurs during the curing reaction. In this study, in order to reduce volumetric shrinkage of the current dental restorative composite resin, asymmetric spiro orthocarbonates were synthesized and then the characteristics of resin composites containing them were explored. The volumetric shrinkage of the dental composites containing spiro orthocarbonates was decreased approximately 45%. However, the curing characteristics and mechanical properties of the new dental composites were slightly poor than those of the commercially available dental composite.

Effect of Combined Superabsorbent Polymers and Expansion Agent on Shrinkage Behavior of High Strength Mortar (고흡수성수지와 팽창재 동시 혼입 시 고강도 모르타르의 수축거동에 미치는 영향)

  • Kim, Minsoo;Hong, Sung-Gul
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.12
    • /
    • pp.157-164
    • /
    • 2019
  • Superabsorbent polymers(SAPs) are powdery material that absorb water several tens or hundreds of times its own mass. It has been reported that when SAPs are incorporated into a high strength cementitious material, the autogenous shrinkage of the material is reduced. Cross-linked sodium polyacrylate type SAPs are relatively safe for human body and low in production cost. In order to apply this type of SAPs to the admixture for total(plastic+autogenous+drying) shrinkage reduction of high strength mortar, the shrinkage behavior of mortar when an expansion agent(EA) and SAPs were mixed together was analyzed. As a result, it was found that the shrinkage was reduced when an EA 5% (mass % of cement) and SAPs 0.4% were mixed together than the mortar containing only an EA 10%. The shrinkage was further reduced when EA 10% and SAPs 0.4% were incorporated into mortar.

COMPARISON OF POLYMERIZATION SHRINKAGE AND STRAIN STRESS OF SEVERAL COMPOSITE RESINS USING STRAIN GUAGE (스트레인 게이지를 이용한 수종의 복합레진의 중합수축 및 수축응력의 비교)

  • Kim, Young-Kwang;Yoo, Seung-Hoon;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.3
    • /
    • pp.516-526
    • /
    • 2004
  • Polymerization shrinkage of photoinitiation type composite resin cause several clinical problems. The purpose of this study was to evaluate the shrinkage strain stress, linear polymerization shrinkage, compressive strength and microhardness of recently developed composite resins. The composite resins were divided into four groups according to the contents of matrix and filler type. Group I : $Denfil^{TM}$(Vericom, Korea) with conventional matrix, Group II : $Charmfil^{(R)}$(Dentkist, Korea) with microfiller and nanofller mixture, Group III : $Filtek^{TM}$ Z250(3M-ESPE, USA) TEGDMA replaced by UDMA and Bis-EMA(6) in the matrix, and Group IV : $Filtek^{TM}$ Supreme(3M-ESPE, USA) using pure nanofiller. Preparation of acrylic molds were followed by filling and curing with light gun. Strain gauges were attached to each sample and the leads were connected to a strainmeter. With strainmeter shrinkage strain stress and linear polymerization shrinkage was measured for 10 minutes. The data detected at 1 minute and 10 minutes were analysed statistically with ONE-way ANOVA test. To evaluate the mechanical properties of tested materials, compressive hardness test and microhardness test were also rendered. The results can be summarized as follows : 1. Filling materials in acrylic molds showed initial temporary expansion in the early phase of polymerization. This was followed by contraction with the rapid increase in strain stress during the first 1 minute and gradually decreased during post-gel shrinkage phase. After 1 minute, there's no statistical differences of strain stress between groups. The highest strain stress was found in group IV and followed by group III, I, II at 10 minutes-measurement(p>.05). In regression analysis of strain stress, group III showed minimal inclination and followed by group II, I, IV during 1 minute. 2. In linear polymerization shrinkage test, the composite resins in every group showed initial increase of shrinkage velocity during the first 1 minute, followed by gradually decrease of shrinkage velocity. After 1 minute, group IV and group III showed statistical difference(p<.05). After 10 minutes, there were statistical differences between group IV and group I, III(p<.05) and between group II and group III(p<.05). In regression analysis of linear polymerization shrinkage, group II showed minimal inclination and followed by group IV, III, I during 1 minute. 3. In compressive strength test, group III showed the highest strength and followed by group II, IV, I. There were statistical differences between group III and group IV, I(p<.05). 4. In microhardness test, upper surfaces showed higher value than lower surfaces in every group(p<.05).

  • PDF

Setting Shrinkage, Coefficient of Thermal Expansion, and Elastic Modulus of UP-MMA Based Polymer Concrete (UP-MMA 폴리머 콘크리트의 경화수축, 열팽창계수 및 탄성계수)

  • Yeon, Kyu-Seok;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.491-498
    • /
    • 2012
  • This study examines setting shrinkage, coefficient of thermal expansion, and elastic modulus of unsaturated polyester( UP)-methyl methacrylate(MMA) polymer concrete, which is generally used for repair of portland cement concrete pavement and manufacturing of precast products. In this study, a series of laboratory test were conducted with variables such as UP-MMA ratio, shrinkage reducing agent (SRA) content, and test temperature. The results showed that the setting shrinkage ranged from 29.2 to $82.6{\times}10^{-4}$, which was significantly affected by test temperature. Moreover, the findings revealed that the coefficient of thermal expansion, elastic modulus and ultimate strain of UP-MMA based polymer concrete ranged from 21.6 to $31.2{\times}10^{-6}/^{\circ}C$, 2.8 to $3.3{\times}10^4$ MPa, and 0.00381 to 0.00418, respectively. The results of this study will be used as important data for design and application of UP-MMA based polymer concrete.

Phase Behavior and Physical Properties of the Bitumen/Rubber Blends (역청/고무 블렌드의 상거동 및 물성)

  • 김갑진;김택현;최세환;조상호
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.315-316
    • /
    • 2003
  • 차량의 통행이 빈번한 기존 아스팔트 도로는 연속적인 차량의 하중에 의한 스트레스로 하중을 받을 때마다 아스팔트도로 층의 강도와 안정성이 떨어지면서 균열이 발생하고 이 균열이 아스팔트 도로 상층부까지 전달되는 반사균열이 발생한고, 열팽창과 수축의 반복에 기인하는 상부의 아스팔트 층의 피로에 의한 균열이 발생한다. 따라서 아스팔트 도로의 반사균열을 억제하고, 아스팔트의 소성변형에 의한 rutting현상을 억제하여 아스팔트의 도로보수 주기를 연장하여 도로상에서의 잦은 보수에 의한 자동차의 정체현상을 줄이고 도로유지에 소요되는 비용을 절감하기 위해서 아스팔트 도로를 설치할 때 아스팔트를 보강시켜주는 geogrid의 사용이 보편화 되고 있다. (중략)

  • PDF

Properties of TLCP/PEN/PET ternary blend fibers with annealing condition (열처리 조건에 따른 TLCP/PEN/PET삼성분계 블렌드 섬유의 특성)

  • 서은수;김준영;김성훈
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.227-230
    • /
    • 2003
  • 열방성 액정고분자 (Thermotropic liquid crystal polymer, TLCP)는 초고강도 섬유로의 응용가능성을 갖고 있어 많은 관심이 집중되고 있으며, 액정고분자의 고강도와 고탄성, 우수한 내열성과 내화학성, 가공시 성형수축률 및 선팽창계수가 작기 때문에 고성능 섬유 및 엔지니어링 플라스틱, 그리고 고분자 복합재료 등 다양한 분야에 응용되고 있다 [1]. 또한 범용성 열가소성 수지와 TLCP와의 용융블렌드는 고분자 복합재료의 강도 및 탄성의 향상뿐만 아니라 우수한 가공성 및 고성능 발현이 가능하기 때문에 현재 많은 연구가 진행되고 있다 [2]. (중략)

  • PDF

An Experimental Study on Plastic Shrinkage of fiber and Expansive Additive for Face Slab Concrete (차수벽 콘크리트의 섬유보강 및 팽창제 혼입에 따른 소성수축균열 제어특성에 관한 실험적 연구)

  • Kim, Wan-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.679-682
    • /
    • 2005
  • The effects of substituting cement with fiber addition(poly vinyl alcohol), fly ash and Expansive Additive on the control of microcrack and enhanced durability performance of face slab concrete in concrete-faced rockfill dam was studied experimentally The laboratory test results shown that the mixture of fiber containing concrete and of fly ash replacement of concrete to be more effective than expansive additive concrete in the crack control and mechanical performance.

  • PDF

Mechanism and Effects of Welding Residual Stress -Mechanism of Welding Residual Stress- (용접잔류응력의 생성 메카니즘과 그 영향(I) -용접잔류응력의 생성 메카니즘-)

  • 박정웅
    • Journal of Welding and Joining
    • /
    • v.22 no.2
    • /
    • pp.1-2
    • /
    • 2004
  • 강구조물 제작시 용접프로세스에 의해 용접부 근방에서는 용접열원에 의해 급속가열ㆍ급속냉각의 열 사이클을 받으며, 열원의 이동과 함께 온도장이 변화하므로 용접부에 불균일한 온도분포가 발생된다. 이러한 불균일한 온도분포에 의한 용접부 근방의 열팽창ㆍ수축을 용접부로부터 떨어져 있는 저온상태의 부재가 이를 구속하여 결과적으로 용접변형과 잔류응력이 발생한다.(중략)

Effect of Mullite on High Alumina Refractory (I) (고 알루미나질 내화물에 미치는 Mullite의 영향(I))

  • 김인섭;김세훈;박주석;강지연;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.128-136
    • /
    • 2001
  • 본 연구에서는 kaolin을 이용하여 반기상법, gel coating법, seed 첨가법으로 mullite를 합성하였으며 mullite 15 wt%를 고 알루미나질 내화물 원료에 첨가하여 내화물 시편을 제조하였다. 제조된 시편의 물성을 분석한 결과 seed 첨가법으로 제조된 mullite를 첨가한 시편의 물성이 338.60 MPa의 꺾임강도와 9,427 kgf/$\textrm{cm}^2$의 압축강도값을 나타내었다. 제조된 시편의 내화도 및 잔존선팽창수축률을 측정한 결과 나머지 두가지 방법으로 합성한 mullite나 일반적인 고 알루미나질 내화물에 비하여 좋은 특성을 나타내었다.

  • PDF

Thermal expansion and Shrinkage of concrete and Steel bar (고층에서의 콘크리트와 철근의 팽창 및 수축)

  • 오창희;김화중
    • Fire Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.11-20
    • /
    • 1988
  • The success of analyzing the behavior of reinforced concrete structures at elevated temperature greatly depends on how accurately certain thermal properties, especially thermal expansion, specific heat and density thermal conductivity can be determined in a wide temperature range. In this Paper, in order to Predict the behavior of reinforced concrete structure in fire hazards thermal expansion characteristics of normal concrete are formulated through experimental investigation.

  • PDF