• 제목/요약/키워드: 패턴 분류 규칙

검색결과 142건 처리시간 0.054초

새로운 규칙 생성 알고리즘 (A New Rule-Generation Algorithm)

  • 김상귀;윤충화
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.721-723
    • /
    • 2005
  • 패턴 분류에 많이 사용되는 MBR(Memory Based Reasoning) 기법은 메모리에 저장된 학습패턴과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 분류 기준을 설명할 수 있는 IF-THIN 형태의 규칙을 생성하고 생성된 규칙의 일반화 성능을 향상시키기 위하여 불필요한 조건을 제거하는 규칙 pruning 알고리즘과 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안한다.

  • PDF

RPA 기법을 이용한 규칙의 확장 (Expanding Rule Using Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 추계학술발표논문집(상)
    • /
    • pp.489-492
    • /
    • 2004
  • 미지의 패턴을 분류하기 위해서 사용되는 메모리 기반 학습 기법은 만족할만한 분류 성능을 보여주고 있다. 하지만 메모리 기반 학습기법은 단순히 패턴과 메모리에 저장된 예제들 간의 거리를 기준으로 분류하므로, 패턴을 분류하는 처리과정을 설명할 수 없다는 문제점을 가지고 있다. 본 논문에서는 RPA(Recursive Partition Averaging) 기법을 이용하여 패턴을 분류하는 과정을 설명할 수 있는 규칙 추출 알고리즘과 또한 일반화 성능을 향상시키기 위하여 규칙의 조건을 확장하는 알고리즘을 제안한다.

  • PDF

패턴분류를 위한 온톨로지 기반 퍼지 분류기 (Ontology-based Fuzzy Classifier for Pattern Classification)

  • 이인근;손창식;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권6호
    • /
    • pp.814-820
    • /
    • 2008
  • 최근, 패턴분류에 온톨로지를 이용하려는 연구가 다양한 분야에서 시도되고 있다. 그러나 대부분의 이러한 연구에서는 패턴분류 관련 지식을 표현한 온톨로지지가 패턴분류 과정에서 단순히 참조되는 수준에 머물고 있다. 본 논문에서는 퍼지 규칙기반 분류기를 확장한 온톨로지 기반 퍼지 분류기를 제안한다. 이를 위해 퍼지규칙 기반 패턴분류 방법을 개념화하여 온톨로지를 구성하고, 패턴분류를 위한 온톨로지 추론 규칙을 생성한다. 그리고 IRIS 데이터집합의 패턴분류 실험을 통해 온톨로지 기반 퍼지 분류기의 타당성을 보인다.

신경망과 다단계 연관규칙을 이용한 구매 패턴 분류 시스템의 설계 (Design of Purchasing Pattern Classification System Using Nural Network and Multiple-Level Association Rules)

  • 이종민;정홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.203-206
    • /
    • 2000
  • 신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.

  • PDF

구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법 (The Method of Classification Considering Rule Weights in the Interval-Valued Fuzzy Sets)

  • 손창식;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 춘계학술대회 학술발표 논문집 제16권 제1호
    • /
    • pp.85-89
    • /
    • 2006
  • 구간값 퍼지집합은 일반적인 퍼지집합보다 언어적인 의사결정 절차에서 매핑의 정확성과 계산의 효율성이 뛰어나고, 규칙의 가중치는 패턴 분류문제에서 분류 경계를 효율적으로 조정할 수 있다는 장점을 가지고 있다. 따라서 본 논문에서는 퍼지규칙 기반 분류방법을 구간값 퍼지규칙 기반 분류방법으로 확장하고 규칙의 가중치를 고려한 분류방법을 제안한다. 모의실험에서는 일반 퍼지집합에서 규칙 가중치를 고려한 분류방법과 구간값 퍼지집합에서 규칙 가중치를 고려한 분류방법을 비교하였다.

  • PDF

결정규칙의 자동생성을 위한 패턴공간의 재귀적 퍼지분할 (Recursive Fuzzy Partition of Pattern Space for Automatic Generation of Decision Rules)

  • 김봉근;최형일
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.28-43
    • /
    • 1995
  • 본 논문에서는 패턴분류기를 위해 효과적인 퍼지규칙을 자동으로 생성하기 위한 새로운 방법을 제안한다. 퍼지 규칙은 특징공간에 대해 가상구체를 재귀적으로 정의함으로써 추출되고, 가상구체는 패턴 클래스의 중심벡터와 클래스에 속하는 모든 패턴을 충분히 포함할 수 있는 경계거리로 정의된다. 특히 공간을 분할하기 위해 가상구체를 이용하는 방법은 기존에 많이 사용되고 있는 가상사각형 형태의 분할 방법에 비해 클래스의 형태를 효과적으로 표현할 수 있으므로 패턴 분류기의 정화성을 향상시킬 수 있고, 퍼지규칙의 전제부를 매우 간단하게 표현할 수 있을 뿐만 아니라 제귀적 가상구체의 정의를 통해 추출되는 퍼지규칙들이 계층적인 구조를 갖을 수 있게 함으로써 입력되는 패턴의 신속한 분류를 가능하게 한다. 본 논문에서는 제안된 방법을 기존의 가상사각형을 이용한 퍼지규칙 추출 방법과 비교한다.

  • PDF

재귀적 분할 평균에 기반한 점진적 규칙 추출 알고리즘 (An Incremental Rule Extraction Algorithm Based on Recursive Partition Averaging)

  • 한진철;김상귀;윤충화
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권1호
    • /
    • pp.11-17
    • /
    • 2007
  • 패턴 분류에 많이 사용되는 기법 중의 하나인 메모리 기반 추론 알고리즘은 단순히 메모리에 저장된 학습패턴 또는 초월평면과 테스트 패턴간의 거리를 계산하여 가장 가까운 학습패턴의 클래스로 분류하기 때문에 테스트 패턴을 분류하는 기준을 설명할 수 없다는 문제점을 가지고 있다. 이 문제를 해결하기 위하여, 메모리 기반 학습 기법인 RPA를 기반으로 학습패턴들에 내재된 규칙성을 표현하는 IF-THEN 형태의 규칙을 생성하는 점진적 학습 알고리즘을 제안하였다. 하지만, RPA에 의해 생성된 규칙은 주어진 학습패턴 집합에만 충실히 학습되어 overfitting 현상을 보이게 되며, 또한 패턴 공간의 과도한 분할로 인하여 필요 이상으로 많은 개수의 규칙이 생성된다. 따라서, 본 논문에서는 생성된 규칙으로부터 불필요한 조건을 제거함으로써 ovefitting 현상을 해결함과 동시에 생성되는 규칙의 개수를 줄일 수 있는 점진적 규칙 추출 알고리즘을 제안하였으며, UCI Machine Learning Repository의 벤치마크 데이터를 이용하여 제안한 알고리즘의 성능을 입증하였다.

유전알고리즘을 이용한 최적퍼지 규칙베이스 시스템의 설계 (Design of Optimal Fuzzy Rule-base Systems with Genetic Algorithm)

  • 김종율
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (C)
    • /
    • pp.439-442
    • /
    • 2007
  • 본 논문은 퍼지 분류를 위한 퍼지 규칙베이스 시스템에 대한 최적화 해법으로서 유전 알고리즘에 대해 살펴본다. 즉 퍼지 규칙베이스를 이용하는 퍼지 분류 시스템을 최적화률 하는 유전 알고리즘을 제안한다. 본 논문에서 다루는 최적화는 추출되는 퍼지 규칙의 수와 퍼지 분류 시스템의 입력 패턴을 정확하게 분류하는 지에 대한 성능을 포괄적으로 수행하는 것을 의미한다. 마지막으로 본 논문에서 제안하는 유전 알고리즘을 이용하여 수치실험을 수행하고 그 결과를 통해 제안하는 알고리즘의 유효성과 효율성을 생성된 퍼지 규칙의 수와 퍼지 분류 시스템의 성능의 관점에서 논의한다.

  • PDF

Interval Type-2 FCM based RBFNN의 도움으로 실현된 사례 및 에코 분류기 설계 : LSE와 WLSE의 비교연구 (Design of Event and Echo Classifier Realized with the Aid of Interval Type-2 FCM based RBFNN : Comparative Studies of LSE and WLSE)

  • 송찬석;오성권;김현기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1347-1348
    • /
    • 2015
  • 본 논문에서는 기상레이더 데이터에서 섞여있는 강수에코 및 비강수에코를 분류하기 위하여 Interval Type-2 FCM based RBFNN의 도움으로 사례 및 에코 분류기의 설계를 제안한다. 학습과 테스트 데이터는 현재 기상청에서 사용하는 UF radar data를 사용하였으며, 사례 분류기와 에코패턴 분류기의 데이터를 각각 생성한다. 전처리 과정인 사례 분류를 통하여 강수사례 혹은 비강수사례를 분류하여 강수사례일 경우 에코패턴분류를 진행하며, 비강수사례일 경우 데이터에 관측된 모든 반사도 값을 제거한다. 사례 및 에코 분류기는 Interval Type-2 FCM based RBFNN을 통하여 패턴분류를 진행하며, 패턴분류 성능을 확인한다. 또한 후반부 파라미터의 동정 시, 각 규칙에 파라미터를 전역적으로 구하는 LSE와 각 규칙에 대한 파라미터를 독립적으로 구하는 WSLE의 비교연구를 수행한다. 분류기의 성능을 확인하기 위하여 사례 분류 후 에코패턴분류의 결과는 현재 기상청에서 사용하고는 품질검사(QC) 데이터와 비교하여 평가하였다.

  • PDF

퍼지 규칙기반 분류시스템에서 퍼지 분할의 선택방법 (Selection Method of Fuzzy Partitions in Fuzzy Rule-Based Classification Systems)

  • 손창식;정환묵;권순학
    • 한국지능시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.360-366
    • /
    • 2008
  • 퍼지 규칙기반 분류 시스템에서 초기의 퍼지 분할은 주어진 데이터가 가진 속성들의 도메인을 고려함으로서 결정되어지고, 최적의 분류 경계면은 초기에 정의된 퍼지 분할의 파라미터들을 조정함으로서 찾을 수 있다. 본 논문에서는 학습과정들을 사용하지 않고 패턴분류의 성능을 최대화하기 위해 통계적 정보에 기반을 둔 퍼지 분할의 선택방법을 제안한다. 제안된 방법에서 통계적 정보는 주어진 수치적인 데이터로부터 각 입력 속성의 '불확실성 영역', 즉 패턴분류문제에서 분류 경계면이 결정되는 영역을 추출하기 위해 사용되었다. 또한 통계적인 정보에 의해서 생성된 퍼지 분할구간에 대응하는 후보 규칙들을 추출하기 위한 방법과 그 후보 규칙들 간의 커플링 문제를 최소화하기 위한 방법도 추가적으로 논의하였다. 실험에서는 제안된 방법의 효용성을 보이기 위해 IRIS와 New Thyroid Cancer 데이터를 사용한 기존 패턴분류 방법들과의 분류 정확성을 비교하였고, 그 결과들로부터 제안된 방법이 기존의 방법들보다 더 좋은 분류 정확성을 제공함을 확인할 수 있었다.