• Title/Summary/Keyword: 패터닝 기법

Search Result 22, Processing Time 0.027 seconds

A Study of Mechanochemical Hyperfine-Writing Technique Using Deformation Induced Etch Hillock Phenomena (변형유기 식각 힐록 현상을 이용한 기계화학적 극미세 Writing 기법에 대한 연구)

  • Kang Chung Gil;Youn Sung Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.7 s.172
    • /
    • pp.71-78
    • /
    • 2005
  • The purpose of this study is to suggest a hyperfine maskless writing technique by using the nanoindentation and HF wet etching technique. Indents were made on the surface of Pyrex7740 glass by the hyperfine indentation process with a Berkovich diamond indenter, and they were etched in $50\;wr\%$ HF solution. After etching process, convex structure was obtained due to the deformation-induced hillock phenomena. In this study, effects of indentation process parameters (etching time, normal load, loading .ate, hold-time at the maximum load) on the morphologies of the indented surfaces after isotopic etching were investigated from an angle of deformation energies. Finally, sample characters were written to show the possibility of the application.

Local hydrogel patterning and microcantilever fabrication using dynamic mask lithography (동적 마스크 리소그래피를 이용한 하이드로젤 국소 패터닝 기법과 캔틸레버 제작)

  • Lee, Jungchul;Lee, Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.809-809
    • /
    • 2013
  • We report a new method for highly controllable local patterning of a hydrogel on microfabricated cantilevers and fabrication of all hydrogel microcantilevers. We constructed a dynamic mask based photolithography setup using a commercial beam projector, a 3-axis microstage and other optical components. Dynamic masks generated from the beam projector controlled the shape, size, and position of hydrogel patterns while the 3-axis microstage mainly controlled the thickness of hydrogel patterns and hydrogel microcantilevers. Using the constructed setup, polyethyleneglycol diacrylate (PEGDA) was patterned on microfabricated cantilevers in a highly controlled manner. Currently, the smallest PEGDA patternable is a 5-${\mu}m$-diameter circle with a thickness of ~$10{\mu}m$. To confirm thicknesses of patterned PEGDAs on silicon microcantilevers, resonance frequencies of microcantilevers were measured before and after each PEGDA patterning. Thicknesses extracted from resonance measurements showed good agreement with measurements using an optical microscope. In addition, PEGDA microcantilevers with various dimensions and thicknesses were fabricated on glass and silicon substrates. Surfaces of fabricated all hydrogel microcantilevers were flat enough to facilitate other post processing and to be used for various sensing applications.

  • PDF

Grinding Technology for Surface Texturing (연삭기법을 이용한 패터닝 기술)

  • Ko, Tae Jo;Han, Do Sup;Qiu, Kang;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.367-373
    • /
    • 2014
  • Surface texturing is a machining process on the surface to give engineering functions. The representative process of the surface texturing is lotus effect to give hydrophobic property by the lithography and chemical etching, which is the bio mimic from the nature. Surface texturing can be manufactured by a lot of processes, in particular using mechanical method such as a precise diamond turning, grinding, rolling, embossing, vibrorolling, and abrasive jet machining (AJM). Among them, the grinding process is notable in terms of the wide range of texturing area and fast processing time. The patterning by grinding is done by the grooved grinding wheel on the work piece. In this case, the pattern shape is determined by the grinding conditions as well as the wheel dressing conditions. In this paper, experimental study on the pattern shapes were done and provide the feasibility in use for the large area patterning.

Effect of PDMS Blanket Deformation on Printability in Reverse-Offset Printing (리버스 옵셋 인쇄에서 PDMS 블랑켓 변형이 인쇄에 미치는 영향에 관한 연구)

  • Choi, Young-Man;Kim, Kwang-Young;Jo, Jeongdai;Lee, Taik-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.709-714
    • /
    • 2014
  • Reverse-offset printing is one of the technologies that can be used for patterning fine features of the order of a few micrometers for printed electronics. In reverse-offset printing, a coated ink film is transferred to a blanket made of elastomer-like poly-dimethylsiloxane. Then, the blanket is impressed onto a clich$\acute{e}$ that has intaglio patterns. The blanket is deformed by penetrating the intaglio of the clich$\acute{e}$ according to the printing pressure. Excessive deformation of the blanket can cause printing defects upon touching the bottom of the intaglio pattern, especially in large patterns. In this paper, we modelled the deformation of the blanket using the finite element method. Considering the actual printing parameters, a condition for fabricating a clich$\acute{e}$ is proposed to prevent defects by the deformation of the blanket.

Thickness-dependent Film Resistance of Thin Porous Film (얇은 다공 구조 박막에서의 두께에 따른 박막 저항 변화)

  • Song, A-Ree;Kim, Chul-Sung;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.1
    • /
    • pp.6-10
    • /
    • 2012
  • We have observed the change in the film resistance of thin nickel film up to 13 nm, which is deposited on a porous anodic alumina substrate, prepared by two-step anodization technique under phosphoric acid. The resulting film grows as a porous film, following the pore structure on the surface of the alumina substrate, and the value of the resistance lies above $150k{\Omega}$ within the range of thickness studied here, decreasing very slowly with the film thickness. The observed resistance value is much higher than the reported value of a uniform film at the same thickness. Since the observed value of the surface coverage with the pores is smaller than the critical value, expected from the percolation theory, the pore structure limits the formation of conduction channel across the film. In addition, by comparing to the typical model of thickness-dependent resistivity, we expect that the scattering at the pore edge further increases the film resistance.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

Localized Oxidation of (100) Silicon Surface by Pulsed Electrochemical Processes Based on AFM (AFM 기반 Pulse 를 이용한 전기화학적 가공)

  • Lee, Jeong-Min;Kim, Sun-Ho;Park, Jeong-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1631-1636
    • /
    • 2010
  • In this study, we demonstrate a nano-scale lithograph obtained on localized (100) silicon (p-type) surface using by modified AFM (Atomic force microscope) apparatuses and by adopting controlling methods. AFM-based experimental apparatuses are connected to a customized pulse generator that supplies electricity between the conductive tip and the silicon surface, while maintaining a constant humidity throughout the lithography process. The pulse durations are controlled according to various experimental conditions. The electrochemical reaction induced by the pulses occurs in the gap between the conductive tip and silicon surface and result in the formation of nanoscale oxide particles. Oxide particles with various heights and widths can be created by AFM surface modification; the size of the oxide particle depends on the pulse durations and the applied electrical conditions under a humid environment.

Fabrication of Ni Nanodot Structure Using Porous Alumina Mask (다공성 알루미나 마스크를 이용한 니켈 나노점 구조 제작)

  • Lim, Suhwan;Kim, Chul Sung;Kouh, Taejoon
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.4
    • /
    • pp.126-129
    • /
    • 2013
  • We have fabricated an ordered Ni nanodot structure using an alumina mask prepared via 2-step anodization technique under phosphoric acid. We have formed a porous structure with average pore size of 279 nm on $2{\mu}m$ thick alumina film and the thermal deposition of thin Ni film though the mask led to the formation of ordered Ni nanodot structure with an average dot size of 293 nm, following the pore structure on the mask. We further investigated the magnetic properties of the nanodot structure by measuring the hysteresis curve at room temperature. When compared to the magnetic properties of a continuous Ni film, we observed the decrease in the squareness and the increase in coercivity along the magnetization easy axis, due to the isolated nanodot structure. Our study suggests that the ordered nanodot structure can be easiy fabricated with thin film deposition technique using anodized alumina mask as a mask.

Studies on the Patterning of Polyimide LB Film and Its Application for Bioelectronic Device (폴리이미드 LB 필름을 이용한 패터닝 및 생물전자 소자로의 응용에 관한 연구)

  • 오세용;박준규;정찬문;최정우
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.634-643
    • /
    • 2002
  • Ultrathin film of polyamic acid having benzene and sulfonyloxyimide moieties was prepared using the Langmuir-Blodgett (LB) technique, and then photosensitive polyimide LB film was obtained by the thermal treatment of precursor polyamic acid multilayers at 200$\^{C}$ for 1 hr. The polyamic acid was synthesized by condensation polymerization under THF and pyridine cosolvent. All monomers and polymers were identified through elemental analysis, FT-IR and $^1$H-NMR spectroscopic measurements. The microarray patterning of photosensitive polyimide LB film on a gold substrate was generated with a deep UV lithography technique. The well-characterized monolayer of cytochrome c was immobilized on the microarray patterns using two different self-assembly processes. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were investigated based on cyclic voltammetry and atomic force microscopy (AFM). Also, its application in bioelectronic device was examined.

Development of Laser Processing Technology and Life Evaluation Method for Lifespan Improvement of Titanium Superhydrophobic Surface (티타늄 초소수성 표면의 수명 향상을 위한 레이저 처리 기법 개발 및 내수명성 평가법 개발)

  • Kyungeun Jeong;Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Song Yi Jung;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.40 no.3
    • /
    • pp.91-96
    • /
    • 2024
  • Recently, extensive studies have been carried out to enhance various performance aspects such as the durability, lifespan, and hardness by combining diverse materials or developing novel materials. The utilization of superhydrophobic surfaces, particularly in the automotive, textile, and medical device industries, has gained momentum to achieve improved performance and efficiency. Superhydrophobicity refers to a surface state where the contact angle when water droplets fall is above 150°, while the contact angle during sliding motion is smaller than 10°. Superhydrophobic surfaces offer the advantage of water droplets not easily sliding off, maintaining a cleaner state as the droplets leave the surface. Surface modification involves two fundamental steps to achieve superhydrophobicity: surface roughness increase and surface energy reduction. However, existing methods, such as time-consuming processes and toxic organic precursors, still face challenges. In this study, we propose a method for superhydrophobic surface modification using lasers, aiming to create roughness in micro/nanostructures, ensuring durability while improving the production time and ease of fabrication. The mechanical durability of superhydrophobic samples treated with lasers is comparatively evaluated against chemical etching samples. The experimental results demonstrate superior mechanical durability through the laser treatment. Therefore, this research provides an effective and practical approach to superhydrophobic surface modification, highlighting the utility of laser treatment.