Studies on the Patterning of Polyimide LB Film and Its Application for Bioelectronic Device

폴리이미드 LB 필름을 이용한 패터닝 및 생물전자 소자로의 응용에 관한 연구

  • 오세용 (서강대학교 공과대학 화학공학과) ;
  • 박준규 (서강대학교 공과대학 화학공학과) ;
  • 정찬문 (연세대학교 문리대학 화학과) ;
  • 최정우 (서강대학교 공과대학 화학공학과)
  • Published : 2002.09.01

Abstract

Ultrathin film of polyamic acid having benzene and sulfonyloxyimide moieties was prepared using the Langmuir-Blodgett (LB) technique, and then photosensitive polyimide LB film was obtained by the thermal treatment of precursor polyamic acid multilayers at 200$\^{C}$ for 1 hr. The polyamic acid was synthesized by condensation polymerization under THF and pyridine cosolvent. All monomers and polymers were identified through elemental analysis, FT-IR and $^1$H-NMR spectroscopic measurements. The microarray patterning of photosensitive polyimide LB film on a gold substrate was generated with a deep UV lithography technique. The well-characterized monolayer of cytochrome c was immobilized on the microarray patterns using two different self-assembly processes. Physical and electrochemical properties of the self-assembled cytochrome c monolayer were investigated based on cyclic voltammetry and atomic force microscopy (AFM). Also, its application in bioelectronic device was examined.

고분자 주사슬에 벤젠과 sulfonyloxvimide moiety를 가지고 있는 polyamic acid 초박막을 LB 기법을 이용하여 제조한 다음 200 $^{\circ}C$에서 1시간 동안 열처리에 의해 감광성 폴리이미드 LB 필름을 얻었다. Polyamic acid는 THF-pyridine 공용매를 가지고 축중합에 의해 합성하였다. 모든 단량체와 고분자는 원소분석, FT-IR, $^1$H-NMR의 분광학적 측정을 통해 정량 정성분석을 행하였다. UV lithography 방법을 사용하여 금 기판 위에 제조한 감광성 폴리이미드 LB 필름의 마이크로 어레이 패턴을 제조하였다. 형성된 마이크로 어레이 패턴을 따라 두 가지의 자기조립 방법으로 단백질 cytochrome c 단분자 막을 고정화시켰다. 자기조립된 cytochrome c 단분자 막의 물리ㆍ전기 화학적 특성은 cyclic voltammetry와 AFM을 통해 조사하였으며 생물전자소자로의 응용 가능성에 대해서도 검토하였다.

Keywords

References

  1. Electrochimica Acta v.42 L.T. Romankiw https://doi.org/10.1016/S0013-4686(97)00146-1
  2. Acct.Chem.Res. v.27 S.A. MacDonald;C.G. Willson https://doi.org/10.1021/ar00042a001
  3. Molecular Electronics: Bissensor and Biocomputers F. Hong
  4. Langmuir-Blodgett Films G.Roberts
  5. Synthetic Metals v.71 T. Kubota;M. Iwamoto https://doi.org/10.1016/0379-6779(94)03133-Q
  6. Nature v.355 D. Harrer
  7. Material Science and Engineering v.C6 Noboru Saito;Takehisa Matsuda
  8. Colloids and Surfaces A: Physicochemical and Engineering Aspects v.155 Dan V. Nicolau;Takahisa Taguchi;Hiroshi Taniguchi;Susumu Yoshikawa https://doi.org/10.1016/S0927-7757(98)00395-1
  9. Mol.Cryst.Liq.Cryst. v.349 J.W. Choi;Y.S. Nam;S.Y. Oh;D.H. Kim;W.H. Lee https://doi.org/10.1080/10587250008024923
  10. Mol.Cryst.Liq.Cryst. v.370 J.W. Choi;C.J. Yoo;Y.S. Nam;W.H. Lee;S.Y. Oh;Masamich Fujihira https://doi.org/10.1080/10587250108030097
  11. Biosensors and Bioelectronics v.16 no.9 J.W. Choi;Y.S. Nam;S.J. Park;W.H. Lee;D.H. Kim;Masamichi Fujihira https://doi.org/10.1016/S0956-5663(01)00225-1
  12. Colloids and Surfaces B: Biointerfaces v.15 Emanuele Ostuni;Lin Yan;George M.Whitesides https://doi.org/10.1016/S0927-7765(99)00004-1
  13. Biomaterials v.19 A.S. Blawas;W.M. Reichert https://doi.org/10.1016/S0142-9612(97)00218-4
  14. J.Electroanal Chem. v.416 Jinghong Li;Guangjin Cheng https://doi.org/10.1016/S0022-0728(96)04732-8
  15. Biosensor: Fundermental and Application A.P.F. Turner
  16. Polymer(Korea) v.23 no.4 S.Y. Oh;J.Y. Lee;S.Y. Cho;C.M. Chung
  17. Polymer(Korea) v.24 no.3 S.Y. Oh;J.Y. Lee;S.Y. Cho;C.M. Chung
  18. Mol.Cryst.Liq.Cryst. v.349 S.Y. Oh;J.Y. Lee;S.Y. Cho;C.M. Chung https://doi.org/10.1080/10587250008024874
  19. Mol.Cryst.Liq.Cryst. v.370 S.Y. Oh;J.K. Park;J.W. Choi;C.M. Chung https://doi.org/10.1080/10587250108030063