• 제목/요약/키워드: 패션과 음악의 연관성

검색결과 3건 처리시간 0.018초

대중음악 장르에 따른 국내 대중음악 페스티벌 패션의 특성과 음악과의 연관성 -2019, 2022, 2023년도를 중심으로- (Characteristics of Korean Popular Music Festival Fashions According to Popular Music Genres and their Relevance to Music -Focusing on the Years 2019, 2022, and 2023-)

  • 이혜원
    • 한국의류학회지
    • /
    • 제48권2호
    • /
    • pp.211-232
    • /
    • 2024
  • This study examines the morphological and expressive aspects of fashion and its connection to music at Korean music festivals. The research involves a theoretical review and a case study analyzing fashion and music at rock, EDM, hip-hop, and jazz festivals in Korea from 2019 to 2023. The process of selecting fashion cases was reviewed by experts in the field of fashion, and expert focus group interviews were used. The study found that while fashion and music differ in terms of their fundamental morphological components of sensory media, they share features in terms of sensory harmony between their components. In terms of expressive aspects of fashion, it was found that the subject and object of expression are the same for the artist and for the audience. Both music and fashion have sensory transmission and communication between the subject and the audience, and both transmit personal and social meaning. Using these commonalities as indicators of relevance, a relevance evaluation was conducted. As a result of the evaluation, popular music festival fashion and music were interpreted as having a high degree of relevance in terms of expressing emotions and tastes, providing a sense of belonging to a community, and conveying cultural meaning.

연관규칙을 이용한 상황인식 음악 추천 시스템 (A Music Recommendation System based on Context-awareness using Association Rules)

  • 오재택;이상용
    • 디지털융복합연구
    • /
    • 제17권9호
    • /
    • pp.375-381
    • /
    • 2019
  • 최근 추천 시스템은 패션, 동영상, 음악 등을 중심으로 맞춤형 추천 서비스가 제공되어 사용자들의 관심을 모으고 있다. 그러나 이러한 서비스들은 실시간으로 발생하는 상황 정보를 사용하지 않아 여러 상황에 따른 적합한 서비스를 사용자에게 제공하기가 어렵다. 또한 적용되는 상황 정보가 차원을 확장시킬 경우, 데이터 희소성(Data Sparsity)을 증가시켜 사용자들에게 적합한 음악들을 추천할 수 없는 문제가 발생한다. 본 연구에서는 이러한 문제점을 해소시키기 위해 연관규칙(Association Rules)을 적용하여 사용자의 현재 위치 정보와 시간 정보에 대한 관계성 및 규칙들을 이용하여 실시간 상황에서 적합한 음악을 추천하는 시스템을 제안하였다. 수집된 상황 정보를 바탕으로 5-fold Cross Validation을 진행하여 위치와 시간 정보에 따른 추천 시스템의 정확도를 측정하였다. 그 결과 상황 정보가 누적됨에 따라 추천 시스템의 정확도가 향상되는 것을 확인할 수 있었다.

협업 필터링과 빈발 패턴을 이용한 개인화된 그룹 추천 (Personalized Group Recommendation Using Collaborative Filtering and Frequent Pattern)

  • 김정우;박광현
    • 한국통신학회논문지
    • /
    • 제41권7호
    • /
    • pp.768-774
    • /
    • 2016
  • 본 논문에서는 개인화 서비스를 제공하기 위해 책, 음악, 영화 등과 같이 단일 항목을 추천하는 기존 방법의 한계를 극복하고, 패션, 요리 등과 같이 연관성에 따른 항목의 조합, 즉 그룹을 추천하는 방법을 다룬다. 협업 필터링은 사용자 간의 유사도를 측정하여 비슷한 성향의 사용자들이 선택한 항목을 추천하는 방법이며, 사용자의 성향을 예측할 수 있다는 장점이 있다. 본 논문에서는 이러한 협업 필터링과 연관 규칙을 바탕으로 빈발 항목 집합을 생성하고, 그룹 간의 유사도에 따라 그룹을 추천하는 알고리즘을 제안한다. 제안하는 방법의 타당성을 검증하기 위하여 의류 전자상거래에서 4개월 동안 소비자가 구매한 목록 데이터로 실험을 수행하였다.