• 제목/요약/키워드: 패러프레이징

검색결과 3건 처리시간 0.015초

담화 성분을 활용한 지시 발화의 키프레이즈 추출: 한국어 병렬 코퍼스 구축 및 데이터 증강 방법론 (Keyphrase Extraction of Directive Utterances via Discourse Component: Construction and Data Augmentation of Korean Parallel Corpus)

  • 조원익;문영기;김종인;김남수
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.241-245
    • /
    • 2019
  • 문서 요약, 키프레이즈 추출과 패러프레이징은 인간이, 혹은 기계가 문서를 보다 원활히 이해하는 데에 도움을 주는 방법론들이다. 우리는 본 연구에서 질문/요구 등의 지시성 발화를 대상으로, 핵심 내용을 추출하는 간단한 방법론을 통해 한국어 병렬 코퍼스를 구축한다. 또한, 우리는 인적 자원을 활용한 효율적인 데이터 증강 전략을 통해 부족하거나 필수적인 유형의 발화의 양을 보강하고, 약 5만 쌍 크기의 코퍼스를 제작하여 이를 공개한다.

  • PDF

BERT 기반 한국어 문장의 유사도 측정 방법 (Measuring Similarity of Korean Sentences based on BERT)

  • 현종환;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.383-387
    • /
    • 2019
  • 자연어 문장의 자동 평가는 생성된 문장과 정답 문장을 자동으로 비교 및 평가하여, 두 문장 사이의 의미 유사도를 측정하는 기술이다. 이러한 자연어 문장 자동 평가는 기계 번역, 자연어 요약, 패러프레이징 등의 분야에서 자연어 생성 모델의 성능을 평가하는데 활용될 수 있다. 기존 자연어 문장의 유사도 측정 방법은 n-gram 기반의 문자열 비교를 수행하여 유사도를 산출한다. 이러한 방식은 계산 과정이 매우 간단하지만, 자연어의 다양한 특성을 반영할 수 없다. 본 논문에서는 BERT를 활용한 한국어 문장의 유사도 측정 방법을 제안하며, 이를 위해 ETRI에서 한국어 말뭉치를 대상으로 사전 학습하여 공개한 어절 단위의 KorBERT를 활용한다. 그 결과, 기존 자연어 문장의 유사도 평가 방법과 비교했을 때, 약 13%의 성능 향상을 확인할 수 있었다.

  • PDF

말뭉치 자원 희소성에 따른 통계적 수지 신호 번역 문제의 해결 (Addressing Low-Resource Problems in Statistical Machine Translation of Manual Signals in Sign Language)

  • 박한철;김정호;박종철
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.163-170
    • /
    • 2017
  • 통계적 기계 번역을 이용한 구어-수화 번역 연구가 활발해짐에도 불구하고 수화 말뭉치의 자원 희소성 문제는 해결되지 않고 있다. 본 연구는 수화 번역의 첫 번째 단계로써 통계적 기계 번역을 이용한 구어-수지 신호 번역에서 말뭉치 자원 희소성으로부터 기인하는 문제점들을 해결할 수 있는 세 가지 전처리 방법을 제안한다. 본 연구에서 제안하는 방법은 1) 구어 문장의 패러프레이징을 통한 말뭉치 확장 방법, 2) 구어 단어의 표제어화를 통한 개별 어휘 출현 빈도 증가 및 구어 표현의 번역 가능성을 향상시키는 방법, 그리고 3) 수지 표현으로 전사되지 않는 구어의 기능어 제거를 통한 구어-수지 표현 간 문장 성분을 일치시키는 방법이다. 서로 다른 특징을 지닌 영어-미국 수화 병렬 말뭉치들을 이용한 실험에서 각 방법론들이 단독으로 쓰일 때와 조합되어 함께 사용되었을 때 모두 말뭉치의 종류와 관계없이 번역 성능을 개선시킬 수 있다는 것을 확인할 수 있었다.