본 논문에서는 한방병원에서 사상체질분류검사설문지를 이용하여 사상체질을 진단할 때 진단의 정확도를 향상시키기 위한 사상체질분류함수를 개발하기 위하여 데이터마이닝에서의 판별분석모형을 이용한다. 데이터 정제 과정에서 양질의 데이터를 확보하기 위한 기준은 상반되는 설문의 응답 패턴과 체질별 설문의 응답 비율을 이용하며, 변수선택의 기준은 도수분석의 비율차이검정과 선형판별함수의 계수를 이용한다.
본 논문에서는 한방병원에서 사상체질분류검사설문지를 이용하여 사상체질을 진단할 때 진단의 정확도를 향상시키기 위한 사상체질분류함수를 개발하기 위하여 데이터마이닝에서의 판별분석모형을 이용한다. 데이터 정제 과정에서 불성실한 응답자를 제거시키기 위한 기준은 상반되는 설문의 응답 패턴과 체질별 설문의 응답 비율을 이용하며, 변수선택의 기준은 상관분석의 크론박 알파 계수와 선형판별함수의 계수를 이용한다.
본 논문에서는 세 집단만을 판별분석 할 경우에 계산되는 오분류확률에 영향을 미치는 이상치 판별을 목적으로 하며, 쉽게 응용 가능한 간단한 영향함수식을 제시하였다. 그리고 제시된 수식을 이용하여 안면 데이터로 세 가지 사상체질을 분류해보고 각 관찰값들의 오분류확률에 대한 영향함수를 계산하였다. 이상치를 제거하고 재 판별분석을 하는 데 있어, 오분류확률에 대한 영향함수를 이용하는 것이 효율적인 방법임을 확인하였다.
이 연구는 한국인의 정치적 성향을 판별하는데 복지에 대한 태도가 유의한 기여를 하는지 여부를 실증적으로 분석하고자 한다. 분석자료는 2022년도 수집된 한국복지패널 17년차 자료이다. 종속변수는 진보와 보수로 구분된 응답자의 정치적 성향이며 핵심 종속변수는 복지태도의 두 가지 측면, 보편주의 vs 선별주의에 대한 태도와 복지를 위한 증세에 대한 태도이다. 기존 연구들에서 정치적 성향에 영향을 미치는 것으로 알려진 성별, 연령, 정치에 대한 관심, 경제활동 상태, 교육수준 등이 통제변수로 활용되었다. 판별분석을 통해 종속변수 범주의 구분에 유의하게 하는 독립변수 확인, 확인된 독립변수를 활용하여 판별함수 구축, 판별 능력 측면에서 개별 독립변수들의 상대적 중요도 파악, 판별함수의 판별력 평가 및 새로운 판별 대상에 대한 범주 예측 등을 수행하였다. 분석결과, 판별함수에 의한 집단 간 판별점수는 유의한 것으로 나타났으며 '성별'과 '임시직 여부'를 제외한 모든 변수들이 유의한 판별효과를 보이는 것으로 나타났다. 종속변수의 판별에 미치는 효과의 크기는 '응답자 연령', '복지태도_증세', '복지태도_보편 vs 선별', '정치에 대한 관심', '교육수준' 순으로 나타났다. '진보' 집단의 79.8%, '보수' 집단의 81.2%가 정확히 분류된 것으로 나타났으며, 분류 적중률은 80.2%로 나타났다.
이 논문은 얼굴인식을 수행하기 위해서 이미 잘 알려진 주성분 분석법과 선형판별 분석법에 레이디얼 기저 함수 신경망을 결합한 인식 알고리즘을 제시하였다. 입력된 원래의 얼굴영상은 주성분분석법을 통하여 차원을 줄인 고유 얼굴 가중치를 산출한다. 이 가중치 벡터를 선형판별 분석법의 입력데이터로 사용하여 선형판별분석의 변환행렬을 계산할 때 클래스 내의 분산행렬에서 특이점이 발생하지 않도록 하면서 특징벡터를 산출하여 인식을 수행하였다. 두 번째 시도에서는 선형판별분석법에 의해 생성된 특징벡터를 레이디얼 기저 함수 신경망에 입력하여 학습하고 얼굴인식을 수행하였다. ORL DB의 얼굴영상에 대해 실험한 결과 93.5%의 인식률을 얻을 수 있었다.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.249-265
/
1995
본 논문에서는 확률분포가 알려져 있지 않은 두 모집단 중 어느 하나로 새로운 관측치를 분류할 때 오분류확률이 분석자에 의해 사전에 정해진 수준에 부합할 수 있도록 커널 판별함수의 임계치를 결정하였다. 정해진 오분류확률을 만족시키기 위한 판별함수의 임계치는 붓스트랩(bootstrap)기법을 판별 함수에 적용시켜 계산된다. 본 논문에서 제시도된 방법은 모집단에 대한 모수적 가정이 없으므로 어느 분포에도 적용가능하며, 모집단이 정규분포, 대수정규분포, 이산형과 연속형 변수가 혼합된 분포의 경우 모의실험을 통하여 그 성능에 대한 검증을 하였다.
본 연구에서는 1,300명의 소비자들이 직접 먹어보고 평가한 한우고기 데이터를 이용하여 쇠고기 맛 등급을 구분 해 내기 위한 판별분석 방법들을 비교하였다. 한우 관능평가의 주요 세 변수인 연도, 다즙성, 향미를 포함한 정준 판별분석과 대표적인 맛 변수로 여겨지는 전반적인 기호도 만을 이용하여 선형판별분석과 비모수 판별분석을 하였다. 전반적인 기호도와 같은 한 개의 변수만을 사용할 경우 두 가지 모두 비슷한 분류율을 나타내지만 선형판별 함수는 이해와 사용 측면에서 장점이 있었던 반면에 비모수적 방법은 커널함수와 띠폭에 대한 선택이 불편하지만 잘 선택하면 정확한 분류율을 높일 수 있는 장점이 있었다. 그러나 다른 정보를 가진 변수들이 있음에도 불구하고 한 개의 변수만을 이용한 판별 분석은 판별에 영향을 미치는 다른 중요한 변수들의 정보를 활용하지 못한다는 문제점이 있다. 한편, 정준판별분석의 경우 정준판별함수의 오분류율이 일변량 선형 판별함수와 비모수 판별함수의 오분류율에 비해 크게 떨어지지 않으면서 분포에 대한 특별한 가정이 필요하지 않아 통계적 가정이 까다롭지 않고 또한 맛에 중요한 요인인 연도, 다즙성, 향미의 세 개변수를 모두 사용하므로 맛 정보를 최대로 활용한다는 장점이 있었다. 따라서 본 연구결과 연도, 다즙성, 향미의 세가지 변수 정보를 모두 포함한 다변량 정준판별분석법을 이용하는 것이 맛 등급을 구분하는데 가장 적절할 것으로 판단되었다.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.414-422
/
1995
본 논문에서는 그래픽스에 의한 판별분석을 다루고 있다. 본 논문에서 제안하는 새로운 그래프는 표본이차판별함수에 기초하고 있으며 기존의 MV 그래프와 실제자료에 대하여 비교하고 있다. 판별분석에서 공분한행렬이 같지 않은 경우의 3차원 그래프는 처음 시도된 것으로 이를 위하여 차원축소문제를 논의하고 있다.
다변량 통계분석기법중 하나로 제기된 투사지향방법은 다변량자료를 관심있는 일차원 또는 이차원의 자료로의 선형투사를 찾아 나가는 방법이다. 이 방법은 다변량 자료가 갖는 차원의 문제를 해결해 줄 수 있는 유용한 기법으로 제시되었다. 본 연구에서는 투사지향방법을 이용하여 추정한 다변량 확률밀도함수를 사용한 새로운 비모수적인 판별분석방법을 제시하고, 이를 기존의 모수적 판별분석방법중 실제적으로 많이 사용되는 선형판별함수방법, 그리고 기존의 비모수적 판별분석방법중 계산상의 편리성이 많은 K-최인접방법과 컴퓨터 시뮬레이션을 통하여 비교분석하였다.
본 연구에서는 주성분 분석법 및 선형 판별 분석법을 이용한 다항식 방사형 기저 함수 신경회로망 분류기의 설계 방법론을 소개한다. 주성분 분석법과 선형판별 분석법을 사용하여 주어진 데이터의 정보 손실을 최소화한 특징데이터를 생성하고 이를 다항식 방사형 기저함수 신경회로망의 입력데이터로 사용한다. 방사형 기저 함수 신경회로망의 은닉층은 FCM 클러스터링 알고리즘으로 구성되며 연결가중치는 1차 선형식을 사용하였다. 최적의 분류기 설계를 위해서 최근에 제안된 Artificial Bee Colony(ABC) 최적화 알고리즘을 사용하여 구조 및 파라미터를 동조하였다. ABC 알고리즘을 통해 주성분 분석법과 선형판별 분석법의 고유벡터의 수 및 FCM 클러스터링 알고리즘의 퍼지화 계수등의 파라미터를 동조한다. 제안된 분류기는 대표적인 Machine Learning(ML) 데이터를 사용하여 성능을 평가하며 기존 분류기와 성능을 비교한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.