• Title/Summary/Keyword: 판두께

Search Result 654, Processing Time 0.022 seconds

Experimental Study on Local Convective Mass Transfer From a Circular Cylinder in Uniform Shear Flow (균일 전단류내에 있는 원봉주위의 국소 대류 물질 전달에 관한 실험적 연구)

  • 류명석;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.789-798
    • /
    • 1989
  • A naphthalene sublimation technique based on the heat/mass transfer analogy is used to investigate the circumferential mass transfer from a circular cylinder in an approaching uniform shear flow. Experiments are performed in a wind tunnel (450*450m $m^{2}$ with a shear flow generator which is specially manufactured for generating variable shear rates(S). The effects of an approaching shear flow are correlated with mass transfer coefficients. It is found that the local mass transfer rate on a circular cylinder is characterized with the shear parameter $K^{d}$ defined as Sd/ $U^{c}$ , where d is the radius of cylinder and $U^{c}$ is the approaching velocity at the center of cylinder. The angle on the corresponding to minimum Sherwood number is approximately proportional to the shear parameter on an upper and down number is approximately proportional to the shear parameter on an upper and down circular cylinder (0< $K^{d}$ <0.132). Changes on the averaged mass transfer rate are not significant for small $K^{d}$ , which are slightly proportional to K$d^{2}$ but the local mass transfer rates are significantly changed with the approaching shear flow.

A Study on the Reduction of Over Head Crane′s Weight Considering Buckling, Vibration and Strength (좌굴, 진동, 강도를 고려한 천장크레인의 경량화에 관한 연구)

  • Hong, Do-Kwan;Ahn, Chan-Woo
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.317-322
    • /
    • 2002
  • In this study, structural optimum design was applied to the girder of magnet over head crane. The optimization was carried out using ANSYS Code for the deadweight of girder, especially focused on the thickness of its upper, lower, side and reinforced plates. The weight could be reduced up to around 15% with constraints of its deformation, stress, natural frequency and buckling strength. The structural safety was also verified by the buckling analysis of its panel structure. It might be thought to be very useful to design the conventional structures for the weight save through the structural optimization. Also this paper grasped the sensitivity influenced the design variables upon the objective function and the state variables.

Development of Structural Design Program to apply the Twin-Hull Car-ferry (쌍동형 카페리 구조설계용 프로그램 개발)

  • Lee, Jung-Ho;Oh, Jung-Mo;Seo, Kwang-Cheol
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.731-738
    • /
    • 2017
  • Twin-hulls frequently incur structural damage at connecting members between the hull and deck induced by pitching motions during voyages. so, reasonable reinforcement is necessary around vulnerable spots such as corner knuckle, the chine bottom and inner hull. Since guidelines for structural design are not clear, engineers often respond by reinforcing plate thickness, changing stiffener sizes and reducing frame spacing, etc. These members constitute about 85 % of the longitudinal dimensions of the ship, so it is necessary to locally reinforce certain points to minimize weight stress, and also solve construction cost problems while securing the freeboard margin. Therefore, we developed a new program by analyzing the structural design procedures for the twin car-ferries based on Korean Register of Shipping (KR) High Speed Craft Rules, identifying items that need to be added. In order to ensure the reliability of buckling estimations for procedures and design programs, we conducted a comparative study with other standards and confirmed that differences were minimal.

Discrete Optimum Design of Ship Structures by Genetic Algorithm (유전적 알고리즘에 의한 선체 구조물의 이산적 최적설계)

  • Y.S. Yang;G.H. Kim;W.S. Ruy
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.147-156
    • /
    • 1994
  • Though optimization method had been used for long time for the optimal design of ship structure, design variables in the most cases were assumed to be continuous real values or it was not easy to solve the mixed integer optimum design problems using the conventional optimization methods. Thus, it was often tried to use various initial starting points to locate the best optimum paint and to use special method such as branch and bound method to handle the discrete design variables in the optimization problems. Sometimes it had succeed, but the essential problems for dealing with the local optimum and discrete design variables was left unsolved. Hence, in this paper, Genetic Algorithms adopting the biological evolution process is applied to the ship structural design problem where the integer values for the number of stiffen design variables or the discrete values for the plate thickness variables would be more preferable in order to find out their effects on the final optimum design. Through the numerical result comparisons, it was found that Genetic Algorithm could always yield the global optimum for the discrete and mixed integer structural optimization problem cases even though it takes more time than other methods.

  • PDF

High Temperature Fatigue Life Prediction for Welded Joints of Recuperator Material for UAV (무인기용 레큐퍼레이터 소재의 용접부에 대한 고온 피로수명 예측)

  • Lee, Sang-rae;Kim, Jae-hwan;Kim, Jae-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.2
    • /
    • pp.111-117
    • /
    • 2019
  • An experimental study on the welding part of a heat transfer plate that constitutes the lightweight and high efficiency recuperator is presented in this paper. In particular, to find out the service life of the welded part, fatigue characteristics were determined through experiments. Experiments were carried out on two materials (STS347, AL20-25 + nb), which are selected as the material of the recuperator; further, the specimens were manufactured through the methods used for actual fabrication and the standards recommended by ASTM. To evaluate the mechanical properties of the specimens at room and high temperature, MTS-810 was used in a high-temperature furnace. The tensile test was carried out at room and high temperatures for each specimen. The fatigue test was carried out by setting the load ratio corresponding to 50%, 40%, 30%, 20%, and 10% of the tensile strength at the stress ratio of 0.1. Finally, the fatigue life characteristics obtained by the experiment were compared with the stresses owing to the load generated in the operating conditions of the recuperator, and the lifetime of the welds was evaluated to prepare for the operation time required by the UAV.

Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks (극직교 이방성 회전원판의 진동에 대한 횡전단변형 및 회전관성 효과)

  • Kim, Dong-Hyun;Koo, Kyo-Nam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Dynamic instability of rotating disks is the most significant factor to limit its rotating speed. Application of composite materials to rotating disks may enhance the dynamic stability leading to a possible design of rotating disks with lightweight and high speed. Whereas much work has been done on the effect of transverse shear and rotary inertia, called Timoshenko effect, on the dynamic behavior of plates, there is little work on the correlation between the effect and the rotation of disk, especially nothing in case of composite disks. The dynamic equations of a rotating composite disk are formulated with the Timoshenko effect and the vibrational analysis is performed by using a commercial package MSC/NASTRAN. According to the results, the Timoshenko effect goes seesaw in some modes, unlike the well-known fact that the effect decreases as the rotating speed increases. And it can be concluded, based only on the present results, that decrement of the Timoshenko effect by disk rotation grows larger as the thickness ratio decreases, the diameter ratio increases, the modulus ratio increases, and the mode number increases.

Optimal Design of Graphite Sheet based Cryogenic Cooler Thermal Control System using Veritrek Software (Veritrek 소프트웨어를 활용한 그라파이트시트 기반 극저온 냉각기 열 제어 시스템 최적설계)

  • Bong-Geon Chae;Hye-In Kim;Hyun-Ung Oh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.2
    • /
    • pp.71-78
    • /
    • 2024
  • During the initial thermal design process, determining the thermal effect of various design variables in a complex orbital thermal environment is time-consuming. To save time in the initial design phase, it is necessary to quickly derive optimal design parameters and predict the temperature. To address these challenges, Veritrek, a software specialized in optimal design using a reduced-order model (ROM), was released in 2018. In this paper, we utilized the Veritrek software to build a reduced-order model, conduct sensitivity analysis, and perform optimal design analysis for a graphite sheet-based cryogenic cooler thermal control system. The goal was to determine the optimal design values for the number of graphite sheet layers, radiator area, and thickness that would meet the allowable temperature of the cryogenic cooler.

Analysis of Multi-Mode Reflection and Transmission Coefficients of a Lamb Wave Across a Rectangular Notch (사각형 노치에 대한 램파의 다중 모드 반사와 투과 계수 해석)

  • Kim, Byung-Soo;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.129-139
    • /
    • 2008
  • The purpose of the present work is to derive the reflection and transmission coefficients of $S_0\;and\;A_0$ mode Lamb waves in relation to the geometry of a rectangular notch when the waves propagate across the notch in an elastic plate. Firstly, the excitable modes of the Lamb wave were analyzed with respect to the plate thickness. The scattering phenomena were divided into three independent processes according to the boundary shape of the notch and the direction of the wave propagation. Linear equations for each process were derived with corresponding free or continuous boundary conditions to analyze the scattered waves. By the rule of linear superposition, the waves scattered at each process were summed for each mode. Then the steady-state reflection and transmission coefficients of the scattered waves were determined so that the difference of energy flux between the incident and the scattered waves would remain within 4%.

The Effect of Aquaplast on Surface Dose of Photon Beam (Aquaplast가 광자선의 표면선량에 미치는 영향)

  • Oh, Do-Hoon;Bae, Hoon-Sik
    • Radiation Oncology Journal
    • /
    • v.13 no.1
    • /
    • pp.95-100
    • /
    • 1995
  • Purpose : To evaluate the effect on surface dose due to Aquaplast used for immobilizing the patients with head and neck cancers in photon beam radiotherapy Materials and Methods: To assess surface and buildup region dose for 6MV X-ray from linear accelerator(Siemens Mevatron 6740), we measured percent ionization value with the Markus chamber model 30-329 manufactured by PTW Frieburg and Capintec electrometer, model WK92. For measurement of surface ionization value, the chamber was embedded in $25{\times}25{\times}3cm^3$ acrylic phantom and set on $25{\times}25{\times}5cm^3$ polystyrene phantom to allow adequate scattering. The measurements of percent depth ionization were made by placing the polystyrene layers of appropriate thickness over the chamber. The measurements were taken at 100cm SSD for $5{\times}5cm^2$, $10{\times}10cm^2$ and $15{\times}15cm^2$ field sizes, respectively. Placing the layer of Aquaplast over the chamber, the same procedures were repeated. We evaluated two types of Aquaplast: 1.6mm layer of original Aquaplast(manufactured by WFR Aquaplast Corp.) and transformed Aquaplast similar to moulded one for immobilizing the patients practically. We also measured surface ionization values with blocking tray in presence or absence of transformed Aquaplast. In calculating percent depth dose, we used the formula suggested by Gerbi and Khan to correct overresponse of the Markus chamber. Results : The surface doses for open fields of $5{\times}5cm^2$, $10{\times}10cm^2$, and $15{\times}15cm^2$ were $79\%$, $13.6\%$, and $18.7\%$, respectively. The original Aquaplast increased the surface doses upto $38.4\%$, $43.6\%$, and $47.4\%$, respectively. For transformed Aquaplast, they were $31.2\%$, $36.1\%$, and $40.5\%$, respectively. There were little differences in percent depth dose values beyond the depth of Dmax. Increasing field size, the blocking tray caused increase of the surface dose by $0.2\%$, $1.7\%$, $3.0\%$ without Aquaplast, $0.2\%$, $1.9\%$, $3.7\%$ with transformed Aquaplast, respectively. Conclusion: The original and transformed Aquaplast increased the surface dose moderately. The percent depth doses beyond Dmax, however, were not affected by Aquaplast. In conclusion, although the use of Aquaplast in practice may cause some increase of skin and buildup region dose, reductioin of skin-sparing effect will not be so significant clinically.

  • PDF

Geological Structure of Okcheon Metamorphic Zone in the Miwon-Boeun area, Korea (미원-보은지역에서 옥천변성대의 지질구조)

  • 강지훈;이철구
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.234-249
    • /
    • 2002
  • The Miwon-Boeun area in the central and northern part of Okcheon metamorphic zone, Korea, is composed of Okcheon Supergroup and Mesozoic Cheongju and Boeun granitoids which intruded it. The Okcheon Supergroup consists mainly of quartzite (Midongsan Formation), meta-calcareous rocks (Daehyangsan Formation, Hwajeonri Formation), meta-psammitic rocks (Unkyori Formation), meta-politic rocks (Munjuri Formation), meta-conglomeratic rocks (Hwanggangni Formation) in the study area, showing a zonal distribution of NE trend. Its' general trend is locally changed into NS to EW trend in and around high-angle fault of NS or NW trend. This study focused on deformation history of the Okcheon Supergroup, suggesting that the geological structure was formed at least by four phases of deformation. (1) The first phase of deformation occurred under ductile shear deformation of top-to-the southeast movement, forming sheath fold or A-type fold, asymmetric isoclinal fold, NW-SE trending stretching lineation. (2) The second phase of deformation took place under compression of NW-SE direction, forming subhorizontal, tight upright fold of M trend in the earlier phase, and formed semi-brittle thrust fault (Guryongsan Thrust Fault) of top-to-the southeast movement and associated snake-head fold in the later phase. (3) The third phase of deformation formed subhorizontal, open recumbent fold through gravitational or extensional collapses which might be generated from crustal thickening and gravitational instability. (4) The fourth phase of deformation formed moderately plunging, steeply inclined kink fold related to high-angle faulting, being closely connected with the local change of NE-trending regional foliation into NS to EW direction of strike in the vicinity of the high-angle fault.